These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 23746288)
1. Efficient automatic selection and combination of EEG features in least squares classifiers for motor imagery brain-computer interfaces. Rodríguez-Bermúdez G; García-Laencina PJ; Roca-Dorda J Int J Neural Syst; 2013 Aug; 23(4):1350015. PubMed ID: 23746288 [TBL] [Abstract][Full Text] [Related]
2. A dynamic and self-adaptive classification algorithm for motor imagery EEG signals. Belwafi K; Gannouni S; Aboalsamh H; Mathkour H; Belghith A J Neurosci Methods; 2019 Nov; 327():108346. PubMed ID: 31421162 [TBL] [Abstract][Full Text] [Related]
3. Multi-class EEG classification of motor imagery signal by finding optimal time segments and features using SNR-based mutual information. Mahmoudi M; Shamsi M Australas Phys Eng Sci Med; 2018 Dec; 41(4):957-972. PubMed ID: 30338495 [TBL] [Abstract][Full Text] [Related]
4. A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals. Zarei R; He J; Siuly S; Zhang Y Comput Methods Programs Biomed; 2017 Jul; 146():47-57. PubMed ID: 28688489 [TBL] [Abstract][Full Text] [Related]
5. Uncorrelated multiway discriminant analysis for motor imagery EEG classification. Liu Y; Zhao Q; Zhang L Int J Neural Syst; 2015 Jun; 25(4):1550013. PubMed ID: 25986750 [TBL] [Abstract][Full Text] [Related]
6. Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals. Malan NS; Sharma S Comput Biol Med; 2019 Apr; 107():118-126. PubMed ID: 30802693 [TBL] [Abstract][Full Text] [Related]
7. Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface. Siuly ; Li Y; Paul Wen P Comput Methods Programs Biomed; 2014 Mar; 113(3):767-80. PubMed ID: 24440135 [TBL] [Abstract][Full Text] [Related]
8. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching. Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118 [TBL] [Abstract][Full Text] [Related]
9. Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces. Rodrigues PG; Filho CAS; Attux R; Castellano G; Soriano DC Med Biol Eng Comput; 2019 Aug; 57(8):1709-1725. PubMed ID: 31127535 [TBL] [Abstract][Full Text] [Related]
10. Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: An sparse regression and Weighted Naïve Bayesian Classifier-based approach. Miao M; Zeng H; Wang A; Zhao C; Liu F J Neurosci Methods; 2017 Feb; 278():13-24. PubMed ID: 28012854 [TBL] [Abstract][Full Text] [Related]
11. Improving classification accuracy of motor imagery EEG using genetic feature selection. Hsu WY Clin EEG Neurosci; 2014 Jul; 45(3):163-8. PubMed ID: 24048242 [TBL] [Abstract][Full Text] [Related]
12. Decision tree structure based classification of EEG signals recorded during two dimensional cursor movement imagery. Aydemir O; Kayikcioglu T J Neurosci Methods; 2014 May; 229():68-75. PubMed ID: 24751647 [TBL] [Abstract][Full Text] [Related]
13. Discriminative methods for classification of asynchronous imaginary motor tasks from EEG data. Delgado Saa JF; Çetin M IEEE Trans Neural Syst Rehabil Eng; 2013 Sep; 21(5):716-24. PubMed ID: 23807456 [TBL] [Abstract][Full Text] [Related]
14. Embedded grey relation theory in Hopfield neural network: application to motor imagery EEG recognition. Hsu WY Clin EEG Neurosci; 2013 Oct; 44(4):257-64. PubMed ID: 23536381 [TBL] [Abstract][Full Text] [Related]
15. Neural network classification of autoregressive features from electroencephalogram signals for brain-computer interface design. Huan NJ; Palaniappan R J Neural Eng; 2004 Sep; 1(3):142-50. PubMed ID: 15876633 [TBL] [Abstract][Full Text] [Related]
16. Study of on-line adaptive discriminant analysis for EEG-based brain computer interfaces. Vidaurre C; Schlögl A; Cabeza R; Scherer R; Pfurtscheller G IEEE Trans Biomed Eng; 2007 Mar; 54(3):550-6. PubMed ID: 17355071 [TBL] [Abstract][Full Text] [Related]
17. A fresh look at functional link neural network for motor imagery-based brain-computer interface. Hettiarachchi IT; Babaei T; Nguyen T; Lim CP; Nahavandi S J Neurosci Methods; 2018 Jul; 305():28-35. PubMed ID: 29733940 [TBL] [Abstract][Full Text] [Related]
18. Separable Common Spatio-Spectral Patterns for Motor Imagery BCI Systems. Aghaei AS; Mahanta MS; Plataniotis KN IEEE Trans Biomed Eng; 2016 Jan; 63(1):15-29. PubMed ID: 26452197 [TBL] [Abstract][Full Text] [Related]
19. Feature Selection for Motor Imagery EEG Classification Based on Firefly Algorithm and Learning Automata. Liu A; Chen K; Liu Q; Ai Q; Xie Y; Chen A Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29117100 [TBL] [Abstract][Full Text] [Related]
20. Automatic and adaptive classification of electroencephalographic signals for brain computer interfaces. Rodríguez-Bermúdez G; García-Laencina PJ J Med Syst; 2012 Nov; 36 Suppl 1():S51-63. PubMed ID: 23117792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]