BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 23746352)

  • 1. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase.
    Laurent G; German NJ; Saha AK; de Boer VC; Davies M; Koves TR; Dephoure N; Fischer F; Boanca G; Vaitheesvaran B; Lovitch SB; Sharpe AH; Kurland IJ; Steegborn C; Gygi SP; Muoio DM; Ruderman NB; Haigis MC
    Mol Cell; 2013 Jun; 50(5):686-98. PubMed ID: 23746352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SIRT4 represses peroxisome proliferator-activated receptor α activity to suppress hepatic fat oxidation.
    Laurent G; de Boer VC; Finley LW; Sweeney M; Lu H; Schug TT; Cen Y; Jeong SM; Li X; Sauve AA; Haigis MC
    Mol Cell Biol; 2013 Nov; 33(22):4552-61. PubMed ID: 24043310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosomal protein-Mdm2-p53 pathway coordinates nutrient stress with lipid metabolism by regulating MCD and promoting fatty acid oxidation.
    Liu Y; He Y; Jin A; Tikunov AP; Zhou L; Tollini LA; Leslie P; Kim TH; Li LO; Coleman RA; Gu Z; Chen YQ; Macdonald JM; Graves LM; Zhang Y
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):E2414-22. PubMed ID: 24872453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Sirtuin4 (SIRT4) Protein Interactions: Uncovering Candidate Acyl-Modified Mitochondrial Substrates and Enzymatic Regulators.
    Mathias RA; Greco TM; Cristea IM
    Methods Mol Biol; 2016; 1436():213-39. PubMed ID: 27246218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of rat liver malonyl-CoA decarboxylase and the study of its role in regulating fatty acid metabolism.
    Dyck JR; Berthiaume LG; Thomas PD; Kantor PF; Barr AJ; Barr R; Singh D; Hopkins TA; Voilley N; Prentki M; Lopaschuk GD
    Biochem J; 2000 Sep; 350 Pt 2(Pt 2):599-608. PubMed ID: 10947976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise.
    Park H; Kaushik VK; Constant S; Prentki M; Przybytkowski E; Ruderman NB; Saha AK
    J Biol Chem; 2002 Sep; 277(36):32571-7. PubMed ID: 12065578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart.
    Thapa D; Zhang M; Manning JR; Guimarães DA; Stoner MW; O'Doherty RM; Shiva S; Scott I
    Am J Physiol Heart Circ Physiol; 2017 Aug; 313(2):H265-H274. PubMed ID: 28526709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects.
    Bandyopadhyay GK; Yu JG; Ofrecio J; Olefsky JM
    Diabetes; 2006 Aug; 55(8):2277-85. PubMed ID: 16873691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells.
    Nasrin N; Wu X; Fortier E; Feng Y; Bare' OC; Chen S; Ren X; Wu Z; Streeper RS; Bordone L
    J Biol Chem; 2010 Oct; 285(42):31995-2002. PubMed ID: 20685656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Malonyl-CoA decarboxylase inhibition suppresses fatty acid oxidation and reduces lactate production during demand-induced ischemia.
    Stanley WC; Morgan EE; Huang H; McElfresh TA; Sterk JP; Okere IC; Chandler MP; Cheng J; Dyck JR; Lopaschuk GD
    Am J Physiol Heart Circ Physiol; 2005 Dec; 289(6):H2304-9. PubMed ID: 16100246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance.
    Koves TR; Ussher JR; Noland RC; Slentz D; Mosedale M; Ilkayeva O; Bain J; Stevens R; Dyck JR; Newgard CB; Lopaschuk GD; Muoio DM
    Cell Metab; 2008 Jan; 7(1):45-56. PubMed ID: 18177724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of cardiac malonyl-CoA decarboxylase and its putative role in regulating fatty acid oxidation.
    Dyck JR; Barr AJ; Barr RL; Kolattukudy PE; Lopaschuk GD
    Am J Physiol; 1998 Dec; 275(6):H2122-9. PubMed ID: 9843812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Malonyl-CoA decarboxylase is a major regulator of myocardial fatty acid oxidation.
    Cuthbert KD; Dyck JR
    Curr Hypertens Rep; 2005 Dec; 7(6):407-11. PubMed ID: 16386195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetylation of Mitochondrial Trifunctional Protein α-Subunit Enhances Its Stability To Promote Fatty Acid Oxidation and Is Decreased in Nonalcoholic Fatty Liver Disease.
    Guo L; Zhou SR; Wei XB; Liu Y; Chang XX; Liu Y; Ge X; Dou X; Huang HY; Qian SW; Li X; Lei QY; Gao X; Tang QQ
    Mol Cell Biol; 2016 Oct; 36(20):2553-67. PubMed ID: 27457618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of food intake and energy expenditure by hypothalamic malonyl-CoA.
    Lane MD; Wolfgang M; Cha SH; Dai Y
    Int J Obes (Lond); 2008 Sep; 32 Suppl 4():S49-54. PubMed ID: 18719599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Malonyl CoenzymeA decarboxylase regulates lipid and glucose metabolism in human skeletal muscle.
    Bouzakri K; Austin R; Rune A; Lassman ME; Garcia-Roves PM; Berger JP; Krook A; Chibalin AV; Zhang BB; Zierath JR
    Diabetes; 2008 Jun; 57(6):1508-16. PubMed ID: 18314420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of genes regulating malonyl-CoA in human skeletal muscle.
    Pender C; Trentadue AR; Pories WJ; Dohm GL; Houmard JA; Youngren JF
    J Cell Biochem; 2006 Oct; 99(3):860-7. PubMed ID: 16721829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation.
    Dyck JR; Cheng JF; Stanley WC; Barr R; Chandler MP; Brown S; Wallace D; Arrhenius T; Harmon C; Yang G; Nadzan AM; Lopaschuk GD
    Circ Res; 2004 May; 94(9):e78-84. PubMed ID: 15105298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A role for peroxisome proliferator-activated receptor alpha (PPARalpha ) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase.
    Campbell FM; Kozak R; Wagner A; Altarejos JY; Dyck JR; Belke DD; Severson DL; Kelly DP; Lopaschuk GD
    J Biol Chem; 2002 Feb; 277(6):4098-103. PubMed ID: 11734553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Malonyl-CoA content and fatty acid oxidation in rat muscle and liver in vivo.
    Chien D; Dean D; Saha AK; Flatt JP; Ruderman NB
    Am J Physiol Endocrinol Metab; 2000 Aug; 279(2):E259-65. PubMed ID: 10913024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.