BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 23746407)

  • 1. Determination of fructose 1,6-bisphosphate using a double-receptor sandwich type fluorescence sensing method based on uranyl-salophen complexes.
    Zhang G; Liao L; Lin Y; Yang M; Xiao X; Nie C
    Anal Chim Acta; 2013 Jun; 784():47-52. PubMed ID: 23746407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of ATP using a double-receptor sandwich method based on molecularly imprinted membrane and fluorescence-labeled uranyl-salophen complex.
    Yang M; Liao L; Zhang G; Xiao X; Lin Y; Nie C
    Anal Bioanal Chem; 2013 Sep; 405(23):7545-51. PubMed ID: 23884476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double-receptor sandwich supramolecule sensing method for the determination of ATP based on uranyl-salophen complex and aptamer.
    Zhao M; Liao L; Wu M; Lin Y; Xiao X; Nie C
    Biosens Bioelectron; 2012 Apr; 34(1):106-11. PubMed ID: 22336438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic study on the reactions of bis-salophen with uranyl and then with fructose 1,6-bisphosphate and the analytical application.
    Shen X; Liao L; Chen L; He Y; Xu C; Xiao X; Lin Y; Nie C
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 123():110-6. PubMed ID: 24394527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance light scattering detection of fructose bisphosphates using uranyl-salophen complex-modified gold nanoparticles as optical probe.
    Li S; Liao L; Wu R; Yang Y; Xu L; Xiao X; Nie C
    Anal Bioanal Chem; 2015 Nov; 407(29):8911-8. PubMed ID: 26403237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation and determination of trace uranium using a double-receptor sandwich supramolecule method based on immobilized salophen and fluorescence labeled oligonucleotide.
    Wu M; Liao L; Zhao M; Lin Y; Xiao X; Nie C
    Anal Chim Acta; 2012 Jun; 729():80-4. PubMed ID: 22595437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective recognition of acetate ion based on fluorescence enhancement chemosensor.
    Hosseini M; Ganjali MR; Veismohammadi B; Faridbod F; Abkenar SD; Salavati-Niasari M
    Luminescence; 2012; 27(5):341-5. PubMed ID: 22371380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-resolved fluorescence aptamer-based sandwich assay for thrombin detection.
    Huang DW; Niu CG; Qin PZ; Ruan M; Zeng GM
    Talanta; 2010 Nov; 83(1):185-9. PubMed ID: 21035662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved fluorescence biosensor for adenosine detection based on home-made europium complexes.
    Huang DW; Niu CG; Zeng GM; Ruan M
    Biosens Bioelectron; 2011 Nov; 29(1):178-83. PubMed ID: 21906929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inherently chiral uranyl-salophen macrocycles: computer-aided design and resolution.
    Dalla Cort A; Mandolini L; Pasquini C; Schiaffino L
    J Org Chem; 2005 Nov; 70(24):9814-21. PubMed ID: 16292810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel bifunctional europium complex as a potential fluorescent label for DNA detection.
    Qin PZ; Niu CG; Ruan M; Zeng GM; Wang XY
    Analyst; 2010 Aug; 135(8):2144-9. PubMed ID: 20585687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Turn-on fluorescence sensing of nucleoside polyphosphates using a xanthene-based Zn(II) complex chemosensor.
    Ojida A; Takashima I; Kohira T; Nonaka H; Hamachi I
    J Am Chem Soc; 2008 Sep; 130(36):12095-101. PubMed ID: 18700758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A route to oligosaccharide-appended salicylaldehydes: useful building blocks for the synthesis of metal-salophen complexes.
    Bedini E; Forte G; De Castro C; Parrilli M; Dalla Cort A
    J Org Chem; 2013 Aug; 78(16):7962-9. PubMed ID: 23855512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence sensing and binding behavior of aminobenzenesulfonamidoquinolino-beta-cyclodextrin to Zn2+.
    Liu Y; Zhang N; Chen Y; Wang LH
    Org Lett; 2007 Jan; 9(2):315-8. PubMed ID: 17217293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionalized fluorescent core-shell nanoparticles used as a fluorescent labels in fluoroimmunoassay for IL-6.
    Hun X; Zhang Z
    Biosens Bioelectron; 2007 May; 22(11):2743-8. PubMed ID: 17360175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sensitive method for determination of trace amounts of chromate (III) with terbium (III) sodium hexametaphosphate chelate as fluorescent probe.
    Chen H; Chen J; Wang L; Zhou C; Ling B; Fu J
    Luminescence; 2011; 26(6):434-8. PubMed ID: 20872915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA interaction with Al-N,N'-bis(salicylidene)2,2'-phenylendiamine complex.
    Kashanian S; Gholivand MB; Ahmadi F; Taravati A; Colagar AH
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jun; 67(2):472-8. PubMed ID: 17011818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-situ produced ascorbic acid as coreactant for an ultrasensitive solid-state tris(2,2'-bipyridyl) ruthenium(II) electrochemiluminescence aptasensor.
    Liao Y; Yuan R; Chai Y; Zhuo Y; Yuan Y; Bai L; Mao L; Yuan S
    Biosens Bioelectron; 2011 Aug; 26(12):4815-8. PubMed ID: 21696941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of chiral recognition ability of a novel uranyl-salophen-based receptor: an easy and rapid testing protocol.
    Dalla Cort A; Murua JI; Pasquini C; Pons M; Schiaffino L
    Chemistry; 2004 Jul; 10(13):3301-7. PubMed ID: 15224339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New BODIPY derivatives as OFF-ON fluorescent chemosensor and fluorescent chemodosimeter for Cu2+: cooperative selectivity enhancement toward Cu2+.
    Qi X; Jun EJ; Xu L; Kim SJ; Hong JS; Yoon YJ; Yoon J
    J Org Chem; 2006 Mar; 71(7):2881-4. PubMed ID: 16555847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.