These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 23746446)

  • 1. The making of a slicer: activation of human Argonaute-1.
    Faehnle CR; Elkayam E; Haase AD; Hannon GJ; Joshua-Tor L
    Cell Rep; 2013 Jun; 3(6):1901-9. PubMed ID: 23746446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eukaryote-specific insertion elements control human ARGONAUTE slicer activity.
    Nakanishi K; Ascano M; Gogakos T; Ishibe-Murakami S; Serganov AA; Briskin D; Morozov P; Tuschl T; Patel DJ
    Cell Rep; 2013 Jun; 3(6):1893-900. PubMed ID: 23809764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turning catalytically inactive human Argonaute proteins into active slicer enzymes.
    Hauptmann J; Dueck A; Harlander S; Pfaff J; Merkl R; Meister G
    Nat Struct Mol Biol; 2013 Jul; 20(7):814-7. PubMed ID: 23665583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of endogenous human Argonautes and their miRNA partners in RNA silencing.
    Siomi MC; Siomi H
    Nucleic Acids Symp Ser (Oxf); 2008; (52):59-60. PubMed ID: 18776252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of endogenous human Argonautes and their miRNA partners in RNA silencing.
    Azuma-Mukai A; Oguri H; Mituyama T; Qian ZR; Asai K; Siomi H; Siomi MC
    Proc Natl Acad Sci U S A; 2008 Jun; 105(23):7964-9. PubMed ID: 18524951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multivalent Recruitment of Human Argonaute by GW182.
    Elkayam E; Faehnle CR; Morales M; Sun J; Li H; Joshua-Tor L
    Mol Cell; 2017 Aug; 67(4):646-658.e3. PubMed ID: 28781232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eukaryotic Argonautes come into focus.
    Kuhn CD; Joshua-Tor L
    Trends Biochem Sci; 2013 May; 38(5):263-71. PubMed ID: 23541793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of catalytic human Ago4 identifies structural elements important for RNA cleavage.
    Hauptmann J; Kater L; Löffler P; Merkl R; Meister G
    RNA; 2014 Oct; 20(10):1532-8. PubMed ID: 25114291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure of human argonaute-2 in complex with miR-20a.
    Elkayam E; Kuhn CD; Tocilj A; Haase AD; Greene EM; Hannon GJ; Joshua-Tor L
    Cell; 2012 Jul; 150(1):100-10. PubMed ID: 22682761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dissection of human Argonaute proteins by DNA shuffling.
    Schürmann N; Trabuco LG; Bender C; Russell RB; Grimm D
    Nat Struct Mol Biol; 2013 Jul; 20(7):818-26. PubMed ID: 23748378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slicer function of Drosophila Argonautes and its involvement in RISC formation.
    Miyoshi K; Tsukumo H; Nagami T; Siomi H; Siomi MC
    Genes Dev; 2005 Dec; 19(23):2837-48. PubMed ID: 16287716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage.
    Yuan YR; Pei Y; Ma JB; Kuryavyi V; Zhadina M; Meister G; Chen HY; Dauter Z; Tuschl T; Patel DJ
    Mol Cell; 2005 Aug; 19(3):405-19. PubMed ID: 16061186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining the contribution of microRNA-specific Argonautes with slicer capability in animals.
    Pal A; Vasudevan V; Houle F; Lantin M; Maniates KA; Huberdeau MQ; Abbott AL; Simard MJ
    Nucleic Acids Res; 2024 May; 52(9):5002-5015. PubMed ID: 38477356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence- and structure-based analysis of proteins involved in miRNA biogenesis.
    Sharma C; Mohanty D
    J Biomol Struct Dyn; 2018 Jan; 36(1):139-151. PubMed ID: 27928938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants.
    Carbonell A; Fahlgren N; Garcia-Ruiz H; Gilbert KB; Montgomery TA; Nguyen T; Cuperus JT; Carrington JC
    Plant Cell; 2012 Sep; 24(9):3613-29. PubMed ID: 23023169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative functions of Argonaute proteins in mammalian development.
    Wang D; Zhang Z; O'Loughlin E; Lee T; Houel S; O'Carroll D; Tarakhovsky A; Ahn NG; Yi R
    Genes Dev; 2012 Apr; 26(7):693-704. PubMed ID: 22474261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the PIWI/MID domain of Argonaute protein on the association of miRNAi's seed base with the target.
    Wang Z; Wang Y; Liu T; Wang Y; Zhang W
    RNA; 2019 May; 25(5):620-629. PubMed ID: 30770397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 5' binding MID domain of human Argonaute2 tolerates chemically modified nucleotide analogues.
    Deleavey GF; Frank F; Hassler M; Wisnovsky S; Nagar B; Damha MJ
    Nucleic Acid Ther; 2013 Feb; 23(1):81-7. PubMed ID: 23289589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro RNA cleavage assay for Argonaute-family proteins.
    Miyoshi K; Uejima H; Nagami-Okada T; Siomi H; Siomi MC
    Methods Mol Biol; 2008; 442():29-43. PubMed ID: 18369776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of eight members of the Argonaute family in the human genome.
    Sasaki T; Shiohama A; Minoshima S; Shimizu N
    Genomics; 2003 Sep; 82(3):323-30. PubMed ID: 12906857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.