These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 23746514)
1. A membrane-translocating peptide penetrates into bilayers without significant bilayer perturbations. Cruz J; Mihailescu M; Wiedman G; Herman K; Searson PC; Wimley WC; Hristova K Biophys J; 2013 Jun; 104(11):2419-28. PubMed ID: 23746514 [TBL] [Abstract][Full Text] [Related]
2. Spontaneous membrane-translocating peptides by orthogonal high-throughput screening. Marks JR; Placone J; Hristova K; Wimley WC J Am Chem Soc; 2011 Jun; 133(23):8995-9004. PubMed ID: 21545169 [TBL] [Abstract][Full Text] [Related]
3. Spontaneous Membrane Translocating Peptides: The Role of Leucine-Arginine Consensus Motifs. Fuselier T; Wimley WC Biophys J; 2017 Aug; 113(4):835-846. PubMed ID: 28834720 [TBL] [Abstract][Full Text] [Related]
4. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199 [TBL] [Abstract][Full Text] [Related]
5. How Membrane-Active Peptides Get into Lipid Membranes. Sani MA; Separovic F Acc Chem Res; 2016 Jun; 49(6):1130-8. PubMed ID: 27187572 [TBL] [Abstract][Full Text] [Related]
6. Structural and Thermodynamic Insight into Spontaneous Membrane-Translocating Peptides Across Model PC/PG Lipid Bilayers. Hu Y; Patel S J Membr Biol; 2015 Jun; 248(3):505-15. PubMed ID: 25008278 [TBL] [Abstract][Full Text] [Related]
7. Insertion of TAT peptide and perturbation of negatively charged model phospholipid bilayer revealed by neutron diffraction. Chen X; Sa'adedin F; Deme B; Rao P; Bradshaw J Biochim Biophys Acta; 2013 Aug; 1828(8):1982-8. PubMed ID: 23643891 [TBL] [Abstract][Full Text] [Related]
9. Interactions of membrane active peptides with planar supported bilayers: an impedance spectroscopy study. Lin J; Motylinski J; Krauson AJ; Wimley WC; Searson PC; Hristova K Langmuir; 2012 Apr; 28(14):6088-96. PubMed ID: 22416892 [TBL] [Abstract][Full Text] [Related]
10. Interactions of two transmembrane peptides in supported lipid bilayers studied by a (31)P and (15)N MAOSS NMR strategy. Kouzayha A; Wattraint O; Sarazin C Biochimie; 2009 Jun; 91(6):774-8. PubMed ID: 19455747 [TBL] [Abstract][Full Text] [Related]
11. Study of the interaction of an alpha-helical transmembrane peptide with phosphatidylcholine bilayer membranes by means of densimetry and ultrasound velocimetry. Rybar P; Krivanek R; Samuely T; Lewis RN; McElhaney RN; Hianik T Biochim Biophys Acta; 2007 Jun; 1768(6):1466-78. PubMed ID: 17462583 [TBL] [Abstract][Full Text] [Related]
12. Effect of head group and curvature on binding of the antimicrobial peptide tritrpticin to lipid membranes. Bozelli JC; Sasahara ET; Pinto MR; Nakaie CR; Schreier S Chem Phys Lipids; 2012 May; 165(4):365-73. PubMed ID: 22209923 [TBL] [Abstract][Full Text] [Related]
13. The importance of membrane defects-lessons from simulations. Bennett WF; Tieleman DP Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900 [TBL] [Abstract][Full Text] [Related]
14. Design of membrane-inserting peptides: spectroscopic characterization with and without lipid bilayers. Chung LA; Thompson TE Biochemistry; 1996 Sep; 35(35):11343-54. PubMed ID: 8784189 [TBL] [Abstract][Full Text] [Related]
15. Peptide:lipid ratio and membrane surface charge determine the mechanism of action of the antimicrobial peptide BP100. Conformational and functional studies. Manzini MC; Perez KR; Riske KA; Bozelli JC; Santos TL; da Silva MA; Saraiva GK; Politi MJ; Valente AP; Almeida FC; Chaimovich H; Rodrigues MA; Bemquerer MP; Schreier S; Cuccovia IM Biochim Biophys Acta; 2014 Jul; 1838(7):1985-99. PubMed ID: 24743023 [TBL] [Abstract][Full Text] [Related]
16. Penetratin and related cell-penetrating cationic peptides can translocate across lipid bilayers in the presence of a transbilayer potential. Terrone D; Sang SL; Roudaia L; Silvius JR Biochemistry; 2003 Dec; 42(47):13787-99. PubMed ID: 14636045 [TBL] [Abstract][Full Text] [Related]
17. Cell-penetrating HIV1 TAT peptides float on model lipid bilayers. Ciobanasu C; Harms E; Tünnemann G; Cardoso MC; Kubitscheck U Biochemistry; 2009 Jun; 48(22):4728-37. PubMed ID: 19400584 [TBL] [Abstract][Full Text] [Related]
18. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes. Lu JX; Damodaran K; Blazyk J; Lorigan GA Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398 [TBL] [Abstract][Full Text] [Related]
19. Interaction of Short Pentavalent Cationic Peptides with Negatively Charged DPPG Monolayers and Bilayers: Influence of Peptide Modifications on Binding. Hädicke A; Blume A J Phys Chem B; 2018 Nov; 122(46):10522-10534. PubMed ID: 30371093 [TBL] [Abstract][Full Text] [Related]
20. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylcholine bilayers: differential scanning calorimetric and FTIR spectroscopic studies. Zhang YP; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 1992 Nov; 31(46):11579-88. PubMed ID: 1445893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]