These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 23746514)
21. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylcholine bilayers. Liu F; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2002 Jul; 41(29):9197-207. PubMed ID: 12119034 [TBL] [Abstract][Full Text] [Related]
22. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylglycerol bilayers. Liu F; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2004 Mar; 43(12):3679-87. PubMed ID: 15035638 [TBL] [Abstract][Full Text] [Related]
23. Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides. Herce HD; Garcia AE; Litt J; Kane RS; Martin P; Enrique N; Rebolledo A; Milesi V Biophys J; 2009 Oct; 97(7):1917-25. PubMed ID: 19804722 [TBL] [Abstract][Full Text] [Related]
24. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes. Arouri A; Dathe M; Blume A Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704 [TBL] [Abstract][Full Text] [Related]
25. Membrane translocation mechanism of the antimicrobial peptide buforin 2. Kobayashi S; Chikushi A; Tougu S; Imura Y; Nishida M; Yano Y; Matsuzaki K Biochemistry; 2004 Dec; 43(49):15610-6. PubMed ID: 15581374 [TBL] [Abstract][Full Text] [Related]
26. Structure-function relationship of model Aib-containing peptides as ion transfer intermembrane templates. Higashimoto Y; Kodama H; Jelokhani-Niaraki M; Kato F; Kondo M J Biochem; 1999 Apr; 125(4):705-12. PubMed ID: 10101283 [TBL] [Abstract][Full Text] [Related]
27. Solution NMR studies of cell-penetrating peptides in model membrane systems. Mäler L Adv Drug Deliv Rev; 2013 Jul; 65(8):1002-11. PubMed ID: 23137785 [TBL] [Abstract][Full Text] [Related]
28. Folding of beta-sheet membrane proteins: a hydrophobic hexapeptide model. Wimley WC; Hristova K; Ladokhin AS; Silvestro L; Axelsen PH; White SH J Mol Biol; 1998 Apr; 277(5):1091-110. PubMed ID: 9571025 [TBL] [Abstract][Full Text] [Related]
29. Efficient internalization of TAT peptide in zwitterionic DOPC phospholipid membrane revealed by neutron diffraction. Chen X; Liu S; Deme B; Cristiglio V; Marquardt D; Weller R; Rao P; Wang Y; Bradshaw J Biochim Biophys Acta Biomembr; 2017 May; 1859(5):910-916. PubMed ID: 28153495 [TBL] [Abstract][Full Text] [Related]
30. A hydrophobicity scale for the lipid bilayer barrier domain from peptide permeabilities: nonadditivities in residue contributions. Mayer PT; Xiang TX; Niemi R; Anderson BD Biochemistry; 2003 Feb; 42(6):1624-36. PubMed ID: 12578376 [TBL] [Abstract][Full Text] [Related]
31. Development of structure-lipid bilayer permeability relationships for peptide-like small organic molecules. Cao Y; Xiang TX; Anderson BD Mol Pharm; 2008; 5(3):371-88. PubMed ID: 18355031 [TBL] [Abstract][Full Text] [Related]
33. Free energy of translocating an arginine-rich cell-penetrating peptide across a lipid bilayer suggests pore formation. Huang K; García AE Biophys J; 2013 Jan; 104(2):412-20. PubMed ID: 23442863 [TBL] [Abstract][Full Text] [Related]
34. Membrane permeabilization mechanisms of a cyclic antimicrobial peptide, tachyplesin I, and its linear analog. Matsuzaki K; Yoneyama S; Fujii N; Miyajima K; Yamada K; Kirino Y; Anzai K Biochemistry; 1997 Aug; 36(32):9799-806. PubMed ID: 9245412 [TBL] [Abstract][Full Text] [Related]
35. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239 [TBL] [Abstract][Full Text] [Related]
37. Hydrophobic mismatch and the incorporation of peptides into lipid bilayers: a possible mechanism for retention in the Golgi. Webb RJ; East JM; Sharma RP; Lee AG Biochemistry; 1998 Jan; 37(2):673-9. PubMed ID: 9425090 [TBL] [Abstract][Full Text] [Related]
38. Bilayer interaction and localization of cell penetrating peptides with model membranes: a comparative study of a human calcitonin (hCT)-derived peptide with pVEC and pAntp(43-58). Herbig ME; Fromm U; Leuenberger J; Krauss U; Beck-Sickinger AG; Merkle HP Biochim Biophys Acta; 2005 Jun; 1712(2):197-211. PubMed ID: 15919050 [TBL] [Abstract][Full Text] [Related]
39. Modulation of the binding of signal peptides to lipid bilayers by dipoles near the hydrocarbon-water interface. Voglino L; McIntosh TJ; Simon SA Biochemistry; 1998 Sep; 37(35):12241-52. PubMed ID: 9724538 [TBL] [Abstract][Full Text] [Related]
40. Solid-state NMR investigations of peptide-lipid interactions of the transmembrane domain of a plant-derived protein, Hcf106. Zhang L; Liu L; Maltsev S; Lorigan GA; Dabney-Smith C Chem Phys Lipids; 2013; 175-176():123-30. PubMed ID: 24075840 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]