These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 23746514)
41. Bilayer Thickness and Curvature Influence Binding and Insertion of a pHLIP Peptide. Karabadzhak AG; Weerakkody D; Deacon J; Andreev OA; Reshetnyak YK; Engelman DM Biophys J; 2018 May; 114(9):2107-2115. PubMed ID: 29742404 [TBL] [Abstract][Full Text] [Related]
42. Determination of peptide oligomerization in lipid bilayers using 19F spin diffusion NMR. Buffy JJ; Waring AJ; Hong M J Am Chem Soc; 2005 Mar; 127(12):4477-83. PubMed ID: 15783230 [TBL] [Abstract][Full Text] [Related]
43. Molecular interactions of Alzheimer amyloid-β oligomers with neutral and negatively charged lipid bilayers. Yu X; Wang Q; Pan Q; Zhou F; Zheng J Phys Chem Chem Phys; 2013 Jun; 15(23):8878-89. PubMed ID: 23493873 [TBL] [Abstract][Full Text] [Related]
44. Influence of High pH and Cholesterol on Single Arginine-Containing Transmembrane Peptide Helices. Thibado JK; Martfeld AN; Greathouse DV; Koeppe RE Biochemistry; 2016 Nov; 55(45):6337-6343. PubMed ID: 27782382 [TBL] [Abstract][Full Text] [Related]
45. Mechanism of Action of Peptides That Cause the pH-Triggered Macromolecular Poration of Lipid Bilayers. Kim SY; Pittman AE; Zapata-Mercado E; King GM; Wimley WC; Hristova K J Am Chem Soc; 2019 Apr; 141(16):6706-6718. PubMed ID: 30916949 [TBL] [Abstract][Full Text] [Related]
46. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Ziegler A; Blatter XL; Seelig A; Seelig J Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253 [TBL] [Abstract][Full Text] [Related]
47. Binding of peptides with basic and aromatic residues to bilayer membranes: phenylalanine in the myristoylated alanine-rich C kinase substrate effector domain penetrates into the hydrophobic core of the bilayer. Zhang W; Crocker E; McLaughlin S; Smith SO J Biol Chem; 2003 Jun; 278(24):21459-66. PubMed ID: 12670959 [TBL] [Abstract][Full Text] [Related]
48. Interaction of SNARE Mimetic Peptides with Lipid bilayers: Effects of Secondary Structure, Bilayer Composition and Lipid Anchoring. Wagle S; Georgiev VN; Robinson T; Dimova R; Lipowsky R; Grafmüller A Sci Rep; 2019 May; 9(1):7708. PubMed ID: 31118479 [TBL] [Abstract][Full Text] [Related]
49. Binding of oligoarginine to membrane lipids and heparan sulfate: structural and thermodynamic characterization of a cell-penetrating peptide. Gonçalves E; Kitas E; Seelig J Biochemistry; 2005 Feb; 44(7):2692-702. PubMed ID: 15709783 [TBL] [Abstract][Full Text] [Related]
50. The activation energy for insertion of transmembrane alpha-helices is dependent on membrane composition. Meijberg W; Booth PJ J Mol Biol; 2002 Jun; 319(3):839-53. PubMed ID: 12054874 [TBL] [Abstract][Full Text] [Related]
51. The helix-to-sheet transition of an HIV-1 fusion peptide derivative changes the mechanical properties of lipid bilayer membranes. Heller WT; Zolnierczuk PA Biochim Biophys Acta Biomembr; 2019 Mar; 1861(3):565-572. PubMed ID: 30550881 [TBL] [Abstract][Full Text] [Related]
52. PMP1 18-38, a yeast plasma membrane protein fragment, binds phosphatidylserine from bilayer mixtures with phosphatidylcholine: a (2)H-NMR study. Roux M; Beswick V; Coïc YM; Huynh-Dinh T; Sanson A; Neumann JM Biophys J; 2000 Nov; 79(5):2624-31. PubMed ID: 11053135 [TBL] [Abstract][Full Text] [Related]
54. Strength of integration of transmembrane alpha-helical peptides in lipid bilayers as determined by atomic force spectroscopy. Ganchev DN; Rijkers DT; Snel MM; Killian JA; de Kruijff B Biochemistry; 2004 Nov; 43(47):14987-93. PubMed ID: 15554706 [TBL] [Abstract][Full Text] [Related]
55. Thermodynamics of fusion peptide-membrane interactions. Li Y; Han X; Tamm LK Biochemistry; 2003 Jun; 42(23):7245-51. PubMed ID: 12795621 [TBL] [Abstract][Full Text] [Related]
56. Reduced Lipid Bilayer Thickness Regulates the Aggregation and Cytotoxicity of Amyloid-β. Korshavn KJ; Satriano C; Lin Y; Zhang R; Dulchavsky M; Bhunia A; Ivanova MI; Lee YH; La Rosa C; Lim MH; Ramamoorthy A J Biol Chem; 2017 Mar; 292(11):4638-4650. PubMed ID: 28154182 [TBL] [Abstract][Full Text] [Related]
57. Structure-activity relationships of the antimicrobial peptide gramicidin S and its analogs: aqueous solubility, self-association, conformation, antimicrobial activity and interaction with model lipid membranes. Abraham T; Prenner EJ; Lewis RN; Mant CT; Keller S; Hodges RS; McElhaney RN Biochim Biophys Acta; 2014 May; 1838(5):1420-9. PubMed ID: 24388950 [TBL] [Abstract][Full Text] [Related]
58. Galectin-3 interacts with membrane lipids and penetrates the lipid bilayer. Lukyanov P; Furtak V; Ochieng J Biochem Biophys Res Commun; 2005 Dec; 338(2):1031-6. PubMed ID: 16248982 [TBL] [Abstract][Full Text] [Related]
59. Designing transmembrane alpha-helices that insert spontaneously. Wimley WC; White SH Biochemistry; 2000 Apr; 39(15):4432-42. PubMed ID: 10757993 [TBL] [Abstract][Full Text] [Related]