BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 23746699)

  • 1. Shock absorbing ability of articular cartilage and subchondral bone under impact compression.
    Malekipour F; Whitton C; Oetomo D; Lee PV
    J Mech Behav Biomed Mater; 2013 Oct; 26():127-35. PubMed ID: 23746699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of in vivo fatigue-induced microdamage on local subchondral bone strains.
    Malekipour F; Hitchens PL; Whitton RC; Vee-Sin Lee P
    J Mech Behav Biomed Mater; 2022 Dec; 136():105491. PubMed ID: 36198232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a method to investigate strain distribution across the cartilage-bone interface in guinea pig model of spontaneous osteoarthritis using lab-based contrast enhanced X-ray-computed tomography and digital volume correlation.
    Davis S; Karali A; Zekonyte J; Roldo M; Blunn G
    J Mech Behav Biomed Mater; 2023 Aug; 144():105999. PubMed ID: 37406483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of subchondral bone microdamage quantification using contrast-enhanced imaging techniques.
    Ayodele BA; Malekipour F; Pagel CN; Mackie EJ; Whitton RC
    J Anat; 2024 Jul; 245(1):58-69. PubMed ID: 38481117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of microarchitecture on stressed volume and mechanical fatigue behaviour of equine subchondral bone.
    Koshyk A; Pohl AJ; Takahashi Y; Scott WM; Sparks HD; Edwards WB
    Bone; 2024 May; 182():117054. PubMed ID: 38395248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical response of local regions of subchondral bone under physiological loading conditions.
    Shaktivesh S; Malekipour F; Whitton RC; Lee PV
    J Mech Behav Biomed Mater; 2024 Apr; 152():106405. PubMed ID: 38271752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of two contrast-enhancing staining agents for use in X-ray imaging and digital volume correlation measurements across the cartilage-bone interface.
    Davis S; Karali A; Balcaen T; Zekonyte J; Pétré M; Roldo M; Kerckhofs G; Blunn G
    J Mech Behav Biomed Mater; 2024 Apr; 152():106414. PubMed ID: 38277908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Full-Field Strain Uncertainties and Residuals at the Cartilage-Bone Interface in Unstained Tissues Using Propagation-Based Phase-Contrast XCT and Digital Volume Correlation.
    Tozzi G; Peña Fernández M; Davis S; Karali A; Kao AP; Blunn G
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32516970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue strength of bovine articular cartilage-on-bone under three-point bending: the effect of loading frequency.
    Sadeghi H; Espino DM; Shepherd DE
    BMC Musculoskelet Disord; 2017 Apr; 18(1):142. PubMed ID: 28376781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shock absorbing ability in healthy and damaged cartilage-bone under high-rate compression.
    Shaktivesh ; Malekipour F; Lee PVS
    J Mech Behav Biomed Mater; 2019 Feb; 90():388-394. PubMed ID: 30445365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of Cartilage Poroelastic Material Properties Via Analysis of Loading-Induced Cell Death.
    Kotelsky A; Carrier JS; Buckley MR
    J Biomech Eng; 2024 Aug; 146(8):. PubMed ID: 38530647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between DXA measured systemic bone mineral density and subchondral bone cysts in postmenopausal female patients with knee osteoarthritis: a cross-sectional study : Osteoarthritis cysts and bone mineral density.
    Tönük ŞB; Yorgancıoğlu ZR; Ramadan SU; Kocaoğlu S
    BMC Musculoskelet Disord; 2024 Jan; 25(1):50. PubMed ID: 38212780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyherbal formulation PL02 alleviates pain, inflammation, and subchondral bone deterioration in an osteoarthritis rodent model.
    Upadhyay P; Kalra D; Nilakhe AS; Aggrawal V; Gupta S
    Front Nutr; 2023; 10():1217051. PubMed ID: 38045809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypotrochoidal scaffolds for cartilage regeneration.
    van Kampen KA; Olaret E; Stancu IC; Duarte Campos DF; Fischer H; Mota C; Moroni L
    Mater Today Bio; 2023 Dec; 23():100830. PubMed ID: 37876709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genipin does not reduce the initiation or propagation of microcracks in collagen networks of cartilage.
    Santos S; Neu CP; Grady JJ; Pierce DM
    Osteoarthr Cartil Open; 2022 Mar; 4(1):100233. PubMed ID: 36474465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotribological Tests of Osteochondral Grafts after Treatment with Pro-Inflammatory Cytokines.
    Bauer C; Göçerler H; Niculescu-Morzsa E; Jeyakumar V; Stotter C; Klestil T; Franek F; Nehrer S
    Cartilage; 2021 Dec; 13(1_suppl):496S-508S. PubMed ID: 33596661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of Cartilage-Subchondral Bone Junctions: A Narrative Review with Specific Focus on the Growth Plate.
    Kazemi M; Williams JL
    Cartilage; 2021 Dec; 13(2_suppl):16S-33S. PubMed ID: 32458695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in the treatment of osteoarthritis.
    Grässel S; Muschter D
    F1000Res; 2020; 9():. PubMed ID: 32419923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimisation and feature selection of poly-beta-amino-ester as a drug delivery system for cartilage.
    Perni S; Prokopovich P
    J Mater Chem B; 2020 Jun; 8(23):5096-5108. PubMed ID: 32412019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic viscoelastic characterisation of human osteochondral tissue: understanding the effect of the cartilage-bone interface.
    Mountcastle SE; Allen P; Mellors BOL; Lawless BM; Cooke ME; Lavecchia CE; Fell NLA; Espino DM; Jones SW; Cox SC
    BMC Musculoskelet Disord; 2019 Nov; 20(1):575. PubMed ID: 31785617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.