These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23746727)

  • 1. Mathematica program: its use to simulate metabolic irreversible pathways and inhibition of the first enzyme of a pathway by its end product as visualized with the reservoir model.
    López-Cánovas F; Gomes PJ; Sillero A
    Comput Biol Med; 2013 Aug; 43(7):853-64. PubMed ID: 23746727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of kinetic modeling to plant metabolism.
    Rohwer JM
    Methods Mol Biol; 2014; 1083():275-86. PubMed ID: 24218221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic modelling of plant metabolic pathways.
    Rohwer JM
    J Exp Bot; 2012 Mar; 63(6):2275-92. PubMed ID: 22419742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic modeling as a tool to integrate multilevel dynamic experimental data.
    Mogilevskaya E; Bagrova N; Plyusnina T; Gizzatkulov N; Metelkin E; Goryacheva E; Smirnov S; Kosinsky Y; Dorodnov A; Peskov K; Karelina T; Goryanin I; Demin O
    Methods Mol Biol; 2009; 563():197-218. PubMed ID: 19597787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing methods for metabolic network analysis and an application to metabolic engineering.
    Tomar N; De RK
    Gene; 2013 May; 521(1):1-14. PubMed ID: 23537990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PySCeSToolbox: a collection of metabolic pathway analysis tools.
    Christensen CD; Hofmeyr JS; Rohwer JM
    Bioinformatics; 2018 Jan; 34(1):124-125. PubMed ID: 28968872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition and activation of enzymes. The effect of a modifier on the reaction rate and on kinetic parameters.
    Fontes R; Ribeiro JM; Sillero A
    Acta Biochim Pol; 2000; 47(1):233-57. PubMed ID: 10961698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of integrated Michaelis-Menten equations for enzyme inhibition diagnosis and determination of kinetic constants using Solver supplement of Microsoft Office Excel.
    Bezerra RM; Fraga I; Dias AA
    Comput Methods Programs Biomed; 2013 Jan; 109(1):26-31. PubMed ID: 23021091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized theoretical and practical treatment of the kinetics of an enzyme-catalyzed reaction in the presence of an enzyme equimolar irreversible inhibitor.
    Golicnik M; Stojan J
    J Chem Inf Comput Sci; 2003; 43(5):1486-93. PubMed ID: 14502482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An enzyme mechanism language for the mathematical modeling of metabolic pathways.
    Yang CR; Shapiro BE; Mjolsness ED; Hatfield GW
    Bioinformatics; 2005 Mar; 21(6):774-80. PubMed ID: 15509612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SMET: systematic multiple enzyme targeting - a method to rationally design optimal strains for target chemical overproduction.
    Flowers D; Thompson RA; Birdwell D; Wang T; Trinh CT
    Biotechnol J; 2013 May; 8(5):605-18. PubMed ID: 23613435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pedagogical view of model metabolic cycles.
    García-Herrero V; Sillero A
    Biochem Mol Biol Educ; 2015; 43(6):468-75. PubMed ID: 26515980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computational analysis of protein interactions in metabolic networks reveals novel enzyme pairs potentially involved in metabolic channeling.
    Huthmacher C; Gille C; Holzhütter HG
    J Theor Biol; 2008 Jun; 252(3):456-64. PubMed ID: 17988690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid simulation and analysis of isotopomer distributions using constraints based on enzyme mechanisms: an example from HT29 cancer cells.
    Selivanov VA; Meshalkina LE; Solovjeva ON; Kuchel PW; Ramos-Montoya A; Kochetov GA; Lee PW; Cascante M
    Bioinformatics; 2005 Sep; 21(17):3558-64. PubMed ID: 16002431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parameter identification of in vivo kinetic models: limitations and challenges.
    Heijnen JJ; Verheijen PJ
    Biotechnol J; 2013 Jul; 8(7):768-75. PubMed ID: 23813763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systems biology metabolic modeling assistant: an ontology-based tool for the integration of metabolic data in kinetic modeling.
    Reyes-Palomares A; Montañez R; Real-Chicharro A; Chniber O; Kerzazi A; Navas-Delgado I; Medina MA; Aldana-Montes JF; Sánchez-Jiménez F
    Bioinformatics; 2009 Mar; 25(6):834-5. PubMed ID: 19189977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control analysis of unbranched enzymatic chains in states of maximal activity.
    Heinrich R; Klipp E
    J Theor Biol; 1996 Oct; 182(3):243-52. PubMed ID: 8944155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mining metabolic networks for optimal drug targets.
    Sridhar P; Song B; Kahveci T; Ranka S
    Pac Symp Biocomput; 2008; ():291-302. PubMed ID: 18229694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic modeling of metabolic pathways: application to serine biosynthesis.
    Smallbone K; Stanford NJ
    Methods Mol Biol; 2013; 985():113-21. PubMed ID: 23417802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.