BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 23746841)

  • 1. Regulation of axon guidance by compartmentalized nonsense-mediated mRNA decay.
    Colak D; Ji SJ; Porse BT; Jaffrey SR
    Cell; 2013 Jun; 153(6):1252-65. PubMed ID: 23746841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. This message will self-destruct: NMD regulates axon guidance.
    Preitner N; Quan J; Flanagan JG
    Cell; 2013 Jun; 153(6):1185-7. PubMed ID: 23746834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collaborative and specialized functions of Robo1 and Robo2 in spinal commissural axon guidance.
    Jaworski A; Long H; Tessier-Lavigne M
    J Neurosci; 2010 Jul; 30(28):9445-53. PubMed ID: 20631173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The m6A reader YTHDF1 regulates axon guidance through translational control of Robo3.1 expression.
    Zhuang M; Li X; Zhu J; Zhang J; Niu F; Liang F; Chen M; Li D; Han P; Ji SJ
    Nucleic Acids Res; 2019 May; 47(9):4765-4777. PubMed ID: 30843071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensory and spinal inhibitory dorsal midline crossing is independent of Robo3.
    Comer JD; Pan FC; Willet SG; Haldipur P; Millen KJ; Wright CV; Kaltschmidt JA
    Front Neural Circuits; 2015; 9():36. PubMed ID: 26257608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Operational redundancy in axon guidance through the multifunctional receptor Robo3 and its ligand NELL2.
    Jaworski A; Tom I; Tong RK; Gildea HK; Koch AW; Gonzalez LC; Tessier-Lavigne M
    Science; 2015 Nov; 350(6263):961-5. PubMed ID: 26586761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. To cross or not to cross: alternatively spliced forms of the Robo3 receptor regulate discrete steps in axonal midline crossing.
    Black DL; Zipursky SL
    Neuron; 2008 May; 58(3):297-8. PubMed ID: 18466738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crucial roles of Robo proteins in midline crossing of cerebellofugal axons and lack of their up-regulation after midline crossing.
    Tamada A; Kumada T; Zhu Y; Matsumoto T; Hatanaka Y; Muguruma K; Chen Z; Tanabe Y; Torigoe M; Yamauchi K; Oyama H; Nishida K; Murakami F
    Neural Dev; 2008 Nov; 3():29. PubMed ID: 18986510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real time large scale in vivo observations reveal intrinsic synchrony, plasticity and growth cone dynamics of midline crossing axons at the ventral floor plate of the zebrafish spinal cord.
    Andersen SSL
    J Integr Neurosci; 2019 Dec; 18(4):351-368. PubMed ID: 31912693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nogo-B is the major form of Nogo at the floor plate and likely mediates crossing of commissural axons in the mouse spinal cord.
    Wang L; Yu C; Wang J; Leung P; Ma D; Zhao H; Taylor JSH; Chan SO
    J Comp Neurol; 2017 Sep; 525(13):2915-2928. PubMed ID: 28543060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The divergent Robo family protein rig-1/Robo3 is a negative regulator of slit responsiveness required for midline crossing by commissural axons.
    Sabatier C; Plump AS; Le Ma ; Brose K; Tamada A; Murakami F; Lee EY; Tessier-Lavigne M
    Cell; 2004 Apr; 117(2):157-69. PubMed ID: 15084255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Planar cell polarity genes Frizzled3a, Vangl2, and Scribble are required for spinal commissural axon guidance.
    Sun SD; Purdy AM; Walsh GS
    BMC Neurosci; 2016 Dec; 17(1):83. PubMed ID: 27955617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative splicing of the Robo3 axon guidance receptor governs the midline switch from attraction to repulsion.
    Chen Z; Gore BB; Long H; Ma L; Tessier-Lavigne M
    Neuron; 2008 May; 58(3):325-32. PubMed ID: 18466743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robo3.1A suppresses slit-mediated repulsion by triggering degradation of Robo2.
    Li L; Liu S; Lei Y; Cheng Y; Yao C; Zhen X
    J Neurosci Res; 2014 Jul; 92(7):835-46. PubMed ID: 24936616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RabGDI controls axonal midline crossing by regulating Robo1 surface expression.
    Philipp M; Niederkofler V; Debrunner M; Alther T; Kunz B; Stoeckli ET
    Neural Dev; 2012 Nov; 7():36. PubMed ID: 23140504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robo family of proteins exhibit differential expression in mouse spinal cord and Robo-Slit interaction is required for midline crossing in vertebrate spinal cord.
    Mambetisaeva ET; Andrews W; Camurri L; Annan A; Sundaresan V
    Dev Dyn; 2005 May; 233(1):41-51. PubMed ID: 15768400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complementary expression of transmembrane ephrins and their receptors in the mouse spinal cord: a possible role in constraining the orientation of longitudinally projecting axons.
    Imondi R; Wideman C; Kaprielian Z
    Development; 2000 Apr; 127(7):1397-410. PubMed ID: 10704386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of Vema in the developing mouse spinal cord and optic chiasm.
    Runko E; Kaprielian Z
    J Comp Neurol; 2002 Sep; 451(3):289-99. PubMed ID: 12210140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robo recruitment of the Wave regulatory complex plays an essential and conserved role in midline repulsion.
    Chaudhari K; Gorla M; Chang C; Kania A; Bashaw GJ
    Elife; 2021 Apr; 10():. PubMed ID: 33843588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mis-expression of L1 on pre-crossing spinal commissural axons disrupts pathfinding at the ventral midline.
    Imondi R; Jevince AR; Helms AW; Johnson JE; Kaprielian Z
    Mol Cell Neurosci; 2007 Dec; 36(4):462-71. PubMed ID: 17884558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.