These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering. Chen G; Dong C; Yang L; Lv Y ACS Appl Mater Interfaces; 2015 Jul; 7(29):15790-802. PubMed ID: 26151287 [TBL] [Abstract][Full Text] [Related]
3. Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells. Roskies M; Jordan JO; Fang D; Abdallah MN; Hier MP; Mlynarek A; Tamimi F; Tran SD J Biomater Appl; 2016 Jul; 31(1):132-9. PubMed ID: 26980549 [TBL] [Abstract][Full Text] [Related]
4. Mesoporous silica-layered biopolymer hybrid nanofibrous scaffold: a novel nanobiomatrix platform for therapeutics delivery and bone regeneration. Singh RK; Jin GZ; Mahapatra C; Patel KD; Chrzanowski W; Kim HW ACS Appl Mater Interfaces; 2015 Apr; 7(15):8088-98. PubMed ID: 25768431 [TBL] [Abstract][Full Text] [Related]
5. In vitro cell proliferation evaluation of porous nano-zirconia scaffolds with different porosity for bone tissue engineering. Zhu Y; Zhu R; Ma J; Weng Z; Wang Y; Shi X; Li Y; Yan X; Dong Z; Xu J; Tang C; Jin L Biomed Mater; 2015 Sep; 10(5):055009. PubMed ID: 26391576 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation. Minardi S; Corradetti B; Taraballi F; Sandri M; Van Eps J; Cabrera FJ; Weiner BK; Tampieri A; Tasciotti E Biomaterials; 2015 Sep; 62():128-37. PubMed ID: 26048479 [TBL] [Abstract][Full Text] [Related]
7. Development of a bone substitute material based on alpha-tricalcium phosphate scaffold coated with carbonate apatite/poly-epsilon-caprolactone. Bang LT; Ramesh S; Purbolaksono J; Long BD; Chandran H; Ramesh S; Othman R Biomed Mater; 2015 Jul; 10(4):045011. PubMed ID: 26225725 [TBL] [Abstract][Full Text] [Related]
8. Stimulatory effects of the ionic products from Ca-Mg-Si bioceramics on both osteogenesis and angiogenesis in vitro. Zhai W; Lu H; Wu C; Chen L; Lin X; Naoki K; Chen G; Chang J Acta Biomater; 2013 Aug; 9(8):8004-14. PubMed ID: 23619289 [TBL] [Abstract][Full Text] [Related]
10. Surface energy and stiffness discrete gradients in additive manufactured scaffolds for osteochondral regeneration. Di Luca A; Longoni A; Criscenti G; Lorenzo-Moldero I; Klein-Gunnewiek M; Vancso J; van Blitterswijk C; Mota C; Moroni L Biofabrication; 2016 Feb; 8(1):015014. PubMed ID: 26924824 [TBL] [Abstract][Full Text] [Related]
11. Effect of micro- and macroporosity of bone tissue three-dimensional-poly(epsilon-caprolactone) scaffold on human mesenchymal stem cells invasion, proliferation, and differentiation in vitro. Salerno A; Guarnieri D; Iannone M; Zeppetelli S; Netti PA Tissue Eng Part A; 2010 Aug; 16(8):2661-73. PubMed ID: 20687813 [TBL] [Abstract][Full Text] [Related]
12. Novel mechanically competent polysaccharide scaffolds for bone tissue engineering. Kumbar SG; Toti US; Deng M; James R; Laurencin CT; Aravamudhan A; Harmon M; Ramos DM Biomed Mater; 2011 Dec; 6(6):065005. PubMed ID: 22089383 [TBL] [Abstract][Full Text] [Related]
13. Silk-based anisotropical 3D biotextiles for bone regeneration. Ribeiro VP; Silva-Correia J; Nascimento AI; da Silva Morais A; Marques AP; Ribeiro AS; Silva CJ; Bonifácio G; Sousa RA; Oliveira JM; Oliveira AL; Reis RL Biomaterials; 2017 Apr; 123():92-106. PubMed ID: 28161684 [TBL] [Abstract][Full Text] [Related]
14. Biological performance of titania containing phosphate-based glasses for bone tissue engineering applications. Abou Neel EA; Chrzanowski W; Knowles JC Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():307-13. PubMed ID: 24411382 [TBL] [Abstract][Full Text] [Related]
15. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. Luo Y; Shen H; Fang Y; Cao Y; Huang J; Zhang M; Dai J; Shi X; Zhang Z ACS Appl Mater Interfaces; 2015 Mar; 7(11):6331-9. PubMed ID: 25741576 [TBL] [Abstract][Full Text] [Related]
16. The synergistic effect of VEGF and biomorphic silicon carbides topography on in vivo angiogenesis and human bone marrow derived mesenchymal stem cell differentiation. Díaz-Rodríguez P; Gómez-Amoza JL; Landin M Biomed Mater; 2015 Aug; 10(4):045017. PubMed ID: 26238485 [TBL] [Abstract][Full Text] [Related]
17. Biomimetic collagen scaffolds for human bone cell growth and differentiation. Yang XB; Bhatnagar RS; Li S; Oreffo RO Tissue Eng; 2004; 10(7-8):1148-59. PubMed ID: 15363171 [TBL] [Abstract][Full Text] [Related]
18. Graded porous polyurethane foam: a potential scaffold for oro-maxillary bone regeneration. Giannitelli SM; Basoli F; Mozetic P; Piva P; Bartuli FN; Luciani F; Arcuri C; Trombetta M; Rainer A; Licoccia S Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():329-35. PubMed ID: 25842142 [TBL] [Abstract][Full Text] [Related]
19. Response of monocultured and co-cultured human microvascular endothelial cells and mesenchymal stem cells to macroporous granules of nanostructured-hydroxyapatite agglomerates. Laranjeira MS; Fernandes MH; Monteiro FJ J Biomed Nanotechnol; 2013 Sep; 9(9):1594-606. PubMed ID: 23980507 [TBL] [Abstract][Full Text] [Related]
20. Layer-by-layer assembly of peptide based bioorganic-inorganic hybrid scaffolds and their interactions with osteoblastic MC3T3-E1 cells. Romanelli SM; Fath KR; Phekoo AP; Knoll GA; Banerjee IA Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():316-28. PubMed ID: 25842141 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]