BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 23747366)

  • 1. Polystyrene nanoparticle exposure induces ion-selective pores in lipid bilayers.
    Negoda A; Kim KJ; Crandall ED; Worden RM
    Biochim Biophys Acta; 2013 Sep; 1828(9):2215-22. PubMed ID: 23747366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size dependent disruption of tethered lipid bilayers by functionalized polystyrene nanoparticles.
    Liu Y; Mark Worden R
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):67-75. PubMed ID: 25285435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of lipid charge in organization of water/lipid bilayer interface: insights via computer simulations.
    Polyansky AA; Volynsky PE; Nolde DE; Arseniev AS; Efremov RG
    J Phys Chem B; 2005 Aug; 109(31):15052-9. PubMed ID: 16852905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Phosphatidic Acid on Biomembrane: Experimental and Molecular Dynamics Simulations Study.
    Kwolek U; Kulig W; Wydro P; Nowakowska M; Róg T; Kepczynski M
    J Phys Chem B; 2015 Aug; 119(31):10042-51. PubMed ID: 26167676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of ions on the organization of phosphatidylcholine/phosphatidic acid bilayers.
    Cambrea LR; Haque F; Schieler JL; Rochet JC; Hovis JS
    Biophys J; 2007 Sep; 93(5):1630-8. PubMed ID: 17483164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entrapment and Voltage-Driven Reorganization of Hydrophobic Nanoparticles in Planar Phospholipid Bilayers.
    Basham CM; Spittle S; Sangoro J; El-Beyrouthy J; Freeman E; Sarles SA
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):54558-54571. PubMed ID: 36459500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-Functionalized Polystyrene Nanoparticles Alter the Transmembrane Potential via Ion-Selective Pores Maintaining Global Bilayer Integrity.
    Perini DA; Parra-Ortiz E; Varó I; Queralt-Martín M; Malmsten M; Alcaraz A
    Langmuir; 2022 Dec; 38(48):14837-14849. PubMed ID: 36417698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of membrane models and their composition for islet amyloid polypeptide-membrane aggregation.
    Caillon L; Lequin O; Khemtémourian L
    Biochim Biophys Acta; 2013 Sep; 1828(9):2091-8. PubMed ID: 23707907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomembrane disruption by silica-core nanoparticles: effect of surface functional group measured using a tethered bilayer lipid membrane.
    Liu Y; Zhang Z; Zhang Q; Baker GL; Worden RM
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):429-37. PubMed ID: 24060565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micron dimensioned cavity array supported lipid bilayers for the electrochemical investigation of ionophore activity.
    Maher S; Basit H; Forster RJ; Keyes TE
    Bioelectrochemistry; 2016 Dec; 112():16-23. PubMed ID: 27420132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Heterogeneous Structure Formation on a Supported Lipid Bilayer Disclosed by Single-Particle Tracking.
    Zhong Y; Wang G
    Langmuir; 2018 Oct; 34(39):11857-11865. PubMed ID: 30170491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale dynamics of phospholipids reveals an optimal assembly mechanism of pore-forming proteins in bilayer membranes.
    Sarangi NK; Ayappa KG; Visweswariah SS; Basu JK
    Phys Chem Chem Phys; 2016 Nov; 18(43):29935-29945. PubMed ID: 27762416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric field increases the phase transition temperature in the bilayer membrane of phosphatidic acid.
    Antonov VF; Smirnova EYu ; Shevchenko EV
    Chem Phys Lipids; 1990 Feb; 52(3-4):251-7. PubMed ID: 2340602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid bilayers cushioned with polyelectrolyte-based films on doped silicon surfaces.
    Poltorak L; Verheijden ML; Bosma D; Jonkheijm P; de Smet LCPM; Sudhölter EJR
    Biochim Biophys Acta Biomembr; 2018 Dec; 1860(12):2669-2680. PubMed ID: 30291924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid Chemical Structure Modulates the Disruptive Effects of Nanomaterials on Membrane Models.
    Nazemidashtarjandi S; Vahedi A; Farnoud AM
    Langmuir; 2020 May; 36(18):4923-4932. PubMed ID: 32312045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impedance analysis of supported lipid bilayer membranes: a scrutiny of different preparation techniques.
    Steinem C; Janshoff A; Ulrich WP; Sieber M; Galla HJ
    Biochim Biophys Acta; 1996 Mar; 1279(2):169-80. PubMed ID: 8603084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of lipid composition on the topography of membrane-associated hydrophobic helices: stabilization of transmembrane topography by anionic lipids.
    Shahidullah K; London E
    J Mol Biol; 2008 Jun; 379(4):704-18. PubMed ID: 18479706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Toxicity of Polystyrene-Based Nanoparticles in
    Ozbek O; O Ulgen K; Ileri Ercan N
    Chem Res Toxicol; 2021 Apr; 34(4):1055-1068. PubMed ID: 33710856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between dipolar lipid headgroups and charged nanoparticles mediated by water dipoles and ions.
    Velikonja A; Santhosh PB; Gongadze E; Kulkarni M; Eleršič K; Perutkova Š; Kralj-Iglič V; Ulrih NP; Iglič A
    Int J Mol Sci; 2013 Jul; 14(8):15312-29. PubMed ID: 23887653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable Free-Standing Lipid Bilayer Membranes in Norland Optical Adhesive 81 Microchannels.
    Marin V; Kieffer R; Padmos R; Aubin-Tam ME
    Anal Chem; 2016 Aug; 88(15):7466-70. PubMed ID: 27351219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.