These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 23747438)
41. Diverse acidogenic effluents as feedstock for microalgae cultivation: Dual phase metabolic transition on biomass growth and lipid synthesis. Chiranjeevi P; Venkata Mohan S Bioresour Technol; 2017 Oct; 242():191-196. PubMed ID: 28502573 [TBL] [Abstract][Full Text] [Related]
42. Phaeodactylum tricornutum cultivation under mixotrophic conditions with glycerol supplied with ultrafiltered digestate: A simple biorefinery approach recovering C and N. Su M; D'Imporzano G; Veronesi D; Afric S; Adani F J Biotechnol; 2020 Nov; 323():73-81. PubMed ID: 32745506 [TBL] [Abstract][Full Text] [Related]
43. Optimization of the biomass production of oil algae Chlorella minutissima UTEX2341. Li Z; Yuan H; Yang J; Li B Bioresour Technol; 2011 Oct; 102(19):9128-34. PubMed ID: 21803576 [TBL] [Abstract][Full Text] [Related]
44. Biomass and lipid accumulation of three new screened microalgae with high concentration of carbon dioxide and nitric oxide. Zhang S; Pei H; Hu W; Qi F; Han L; Song M; Han F Environ Technol; 2015; 36(18):2278-84. PubMed ID: 25743853 [TBL] [Abstract][Full Text] [Related]
45. Effect of nitrogen concentration on lipid productivity and fatty acid composition of Monoraphidium sp. Dhup S; Dhawan V Bioresour Technol; 2014; 152():572-5. PubMed ID: 24360518 [TBL] [Abstract][Full Text] [Related]
46. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Chen YH; Walker TH Biotechnol Lett; 2011 Oct; 33(10):1973-83. PubMed ID: 21691839 [TBL] [Abstract][Full Text] [Related]
47. Oil production by the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33. Bondioli P; Della Bella L; Rivolta G; Chini Zittelli G; Bassi N; Rodolfi L; Casini D; Prussi M; Chiaramonti D; Tredici MR Bioresour Technol; 2012 Jun; 114():567-72. PubMed ID: 22459965 [TBL] [Abstract][Full Text] [Related]
48. Mixed microalgae consortia growth under higher concentration of CO Aslam A; Thomas-Hall SR; Manzoor M; Jabeen F; Iqbal M; Uz Zaman Q; Schenk PM; Asif Tahir M J Photochem Photobiol B; 2018 Feb; 179():126-133. PubMed ID: 29367147 [TBL] [Abstract][Full Text] [Related]
50. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels. Yeh KL; Chang JS Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209 [TBL] [Abstract][Full Text] [Related]
51. Lipid metabolism in response to individual short chain fatty acids during mixotrophic mode of microalgal cultivation: Influence on biodiesel saturation and protein profile. Chandra R; Arora S; Rohit MV; Venkata Mohan S Bioresour Technol; 2015; 188():169-76. PubMed ID: 25736905 [TBL] [Abstract][Full Text] [Related]
52. Achieving high lipid productivity of a thermotolerant microalga Desmodesmus sp. F2 by optimizing environmental factors and nutrient conditions. Ho SH; Chang JS; Lai YY; Chen CN Bioresour Technol; 2014 Mar; 156():108-16. PubMed ID: 24491294 [TBL] [Abstract][Full Text] [Related]
53. Biomass production of multipopulation microalgae in open air pond for biofuel potential. Selvakumar P; Umadevi K Indian J Exp Biol; 2016 Apr; 54(4):271-9. PubMed ID: 27295924 [TBL] [Abstract][Full Text] [Related]
54. Microalgae cultivation as tertiary unit operation for treatment of pharmaceutical wastewater associated with lipid production. Hemalatha M; Venkata Mohan S Bioresour Technol; 2016 Sep; 215():117-122. PubMed ID: 27177715 [TBL] [Abstract][Full Text] [Related]
55. Effects of nitrogen concentration on growth, biomass, and biochemical composition of Akgül F Prep Biochem Biotechnol; 2020; 50(1):98-105. PubMed ID: 31809237 [TBL] [Abstract][Full Text] [Related]
56. The growth and lipid accumulation of Scenedesmus quadricauda under nitrogen starvation stress during xylose mixotrophic/heterotrophic cultivation. Mou Y; Liu N; Su K; Li X; Lu T; Yu Z; Song M Environ Sci Pollut Res Int; 2023 Sep; 30(44):98934-98946. PubMed ID: 36502485 [TBL] [Abstract][Full Text] [Related]
57. Evaluation of the potential of 10 microalgal strains for biodiesel production. Song M; Pei H; Hu W; Ma G Bioresour Technol; 2013 Aug; 141():245-51. PubMed ID: 23489572 [TBL] [Abstract][Full Text] [Related]
58. Effects of calcium, magnesium and sodium chloride in enhancing lipid accumulation in two green microalgae. Gorain PC; Bagchi SK; Mallick N Environ Technol; 2013; 34(13-16):1887-94. PubMed ID: 24350442 [TBL] [Abstract][Full Text] [Related]
59. Enhancement of lipid production and fatty acid profiling in Chlamydomonas reinhardtii, CC1010 for biodiesel production. Karpagam R; Preeti R; Ashokkumar B; Varalakshmi P Ecotoxicol Environ Saf; 2015 Nov; 121():253-7. PubMed ID: 25838071 [TBL] [Abstract][Full Text] [Related]
60. Effects of carbon and nitrogen sources on fatty acid contents and composition in the green microalga, Chlorella sp. 227. Cho S; Lee D; Luong TT; Park S; Oh YK; Lee T J Microbiol Biotechnol; 2011 Oct; 21(10):1073-80. PubMed ID: 22031034 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]