These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23747463)

  • 41. Effect of sorption on contaminant oxidation in activated persulfate systems.
    Teel AL; Cutler LM; Watts RJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Sep; 44(11):1098-103. PubMed ID: 19847699
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Persulfate persistence under thermal activation conditions.
    Johnson RL; Tratnyek PG; Johnson RO
    Environ Sci Technol; 2008 Dec; 42(24):9350-6. PubMed ID: 19174915
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pathway-dependent isotope fractionation during aerobic and anaerobic degradation of monochlorobenzene and 1,2,4-trichlorobenzene.
    Liang X; Howlett MR; Nelson JL; Grant G; Dworatzek S; Lacrampe-Couloume G; Zinder SH; Edwards EA; Sherwood Lollar B
    Environ Sci Technol; 2011 Oct; 45(19):8321-7. PubMed ID: 21851082
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Potential for activated persulfate degradation of BTEX contamination.
    Liang C; Huang CF; Chen YJ
    Water Res; 2008 Sep; 42(15):4091-100. PubMed ID: 18718627
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermally activated persulfate oxidation of NAPL chlorinated organic compounds: effect of soil composition on oxidant demand in different soil-persulfate systems.
    Liu J; Liu Z; Zhang F; Su X; Lyu C
    Water Sci Technol; 2017 Apr; 75(7-8):1794-1803. PubMed ID: 28452771
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sulfate-enhanced catalytic destruction of 1,1,1-trichlorethane over Pt(111).
    Lee AF; Wilson K
    J Phys Chem B; 2006 Jan; 110(2):907-13. PubMed ID: 16471622
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Is it possible to remediate a BTEX contaminated chalky aquifer by in situ chemical oxidation?
    Lemaire J; Croze V; Maier J; Simonnot MO
    Chemosphere; 2011 Aug; 84(9):1181-7. PubMed ID: 21733544
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanism of persulfate activation by phenols.
    Ahmad M; Teel AL; Watts RJ
    Environ Sci Technol; 2013 Jun; 47(11):5864-71. PubMed ID: 23663058
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Roles of hydroxyl and sulfate radicals in degradation of trichloroethene by persulfate activated with Fe
    Liu Y; Zhou A; Gan Y; Li X
    J Hazard Mater; 2018 Feb; 344():98-103. PubMed ID: 29032099
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Persulfate injection into a gasoline source zone.
    Sra KS; Thomson NR; Barker JF
    J Contam Hydrol; 2013 Jul; 150():35-44. PubMed ID: 23660235
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lipid extraction from microalgae cell using persulfate-based oxidation.
    Seo YH; Sung M; Oh YK; Han JI
    Bioresour Technol; 2016 Jan; 200():1073-5. PubMed ID: 26614226
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Carbon and hydrogen stable isotope analysis for characterizing the chemical degradation of tributyl phosphate.
    Liu J; Wu L; Kümmel S; Yao J; Schaefer T; Herrmann H; Richnow HH
    Chemosphere; 2018 Dec; 212():133-142. PubMed ID: 30144674
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 34S/32S fractionation during sulfate reduction in groundwater treatment systems: reactive transport modeling.
    Gibson BD; Amos RT; Blowes DW
    Environ Sci Technol; 2011 Apr; 45(7):2863-70. PubMed ID: 21355530
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Contribution of alcohol radicals to contaminant degradation in quenching studies of persulfate activation process.
    Zhu C; Zhu F; Dionysiou DD; Zhou D; Fang G; Gao J
    Water Res; 2018 Aug; 139():66-73. PubMed ID: 29627643
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple.
    Liang C; Bruell CJ; Marley MC; Sperry KL
    Chemosphere; 2004 Jun; 55(9):1213-23. PubMed ID: 15081762
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Notes on the temperature dependence of carbon isotope fractionation by aerobic CH(4)-oxidising bacteria.
    Nihous GC
    Isotopes Environ Health Stud; 2010 Jun; 46(2):133-40. PubMed ID: 20582783
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Persulfate activation by glucose for in situ chemical oxidation.
    Watts RJ; Ahmad M; Hohner AK; Teel AL
    Water Res; 2018 Apr; 133():247-254. PubMed ID: 29407705
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Carbon isotope fractionation during reductive dechlorination of TCE in batch experiments with iron samples from reactive barriers.
    Schüth C; Bill M; Barth JA; Slater GF; Kalin RM
    J Contam Hydrol; 2003 Oct; 66(1-2):25-37. PubMed ID: 14516939
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In situ iron activated persulfate oxidative fluid sparging treatment of TCE contamination--a proof of concept study.
    Liang C; Lee IL
    J Contam Hydrol; 2008 Sep; 100(3-4):91-100. PubMed ID: 18649972
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of zinc, cadmium and lead isotope fractionation during smelting and refining.
    Shiel AE; Weis D; Orians KJ
    Sci Total Environ; 2010 May; 408(11):2357-68. PubMed ID: 20206962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.