These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 23747487)

  • 1. FEM simulation of the die compaction of pharmaceutical products: influence of visco-elastic phenomena and comparison with experiments.
    Diarra H; Mazel V; Busignies V; Tchoreloff P
    Int J Pharm; 2013 Sep; 453(2):389-94. PubMed ID: 23747487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the effect of tablet thickness and punch curvature on density distribution using finite elements method.
    Diarra H; Mazel V; Busignies V; Tchoreloff P
    Int J Pharm; 2015 Sep; 493(1-2):121-8. PubMed ID: 26200746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical evaluation of the capping tendency of microcrystalline cellulose tablets during a diametrical compression test.
    Furukawa R; Chen Y; Horiguchi A; Takagaki K; Nishi J; Konishi A; Shirakawa Y; Sugimoto M; Narisawa S
    Int J Pharm; 2015 Sep; 493(1-2):182-91. PubMed ID: 26188313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical study for tableting process in consideration of compression speed.
    Ohsaki S; Kushida K; Matsuda Y; Nakamura H; Watano S
    Int J Pharm; 2020 Feb; 575():118936. PubMed ID: 31846729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of tablet characteristics from residual stress distribution estimated by the finite element method.
    Hayashi Y; Miura T; Shimada T; Onuki Y; Obata Y; Takayama K
    J Pharm Sci; 2013 Oct; 102(10):3678-86. PubMed ID: 23897300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of the Die-Wall Pressure during the Compression of Biconvex Tablets: Experimental Results and Comparison with FEM Simulation.
    Mazel V; Diarra H; Busignies V; Tchoreloff P
    J Pharm Sci; 2015 Dec; 104(12):4339-4344. PubMed ID: 26460539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigations into the tensile failure of doubly-convex cylindrical tablets under diametral loading using finite element methodology.
    Podczeck F; Drake KR; Newton JM
    Int J Pharm; 2013 Sep; 454(1):412-24. PubMed ID: 23834836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of tablet compaction. I. Characterization of mechanical behavior of powder and powder/tooling friction.
    Cunningham JC; Sinka IC; Zavaliangos A
    J Pharm Sci; 2004 Aug; 93(8):2022-39. PubMed ID: 15236452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a rotary tablet press simulator as a tool for the characterization of compaction properties of pharmaceutical products.
    Michaut F; Busignies V; Fouquereau C; de Barochez BH; Leclerc B; Tchoreloff P
    J Pharm Sci; 2010 Jun; 99(6):2874-85. PubMed ID: 20039388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of friction between powder and tooling on the die-wall pressure evolution during tableting: Experimental and numerical results for flat and concave punches.
    Mazel V; Diarra H; Tchoreloff P
    Int J Pharm; 2019 Jan; 554():116-124. PubMed ID: 30395955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An experimental investigation of temperature rise during compaction of pharmaceutical powders.
    Krok A; Mirtic A; Reynolds GK; Schiano S; Roberts R; Wu CY
    Int J Pharm; 2016 Nov; 513(1-2):97-108. PubMed ID: 27601333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Original predictive approach to the compressibility of pharmaceutical powder mixtures based on the Kawakita equation.
    Mazel V; Busignies V; Duca S; Leclerc B; Tchoreloff P
    Int J Pharm; 2011 May; 410(1-2):92-8. PubMed ID: 21421038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature evolution during compaction of pharmaceutical powders.
    Zavaliangos A; Galen S; Cunningham J; Winstead D
    J Pharm Sci; 2008 Aug; 97(8):3291-304. PubMed ID: 17969108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite Element Modeling of Powder Compaction: Mini-Tablets in Comparison with Conventionally Sized Tablets.
    Naranjo Gómez LN; De Beer T; Kumar A
    Pharm Res; 2022 Sep; 39(9):2109-2118. PubMed ID: 36192615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elastic recovery in roll compaction simulation.
    Keizer HL; Kleinebudde P
    Int J Pharm; 2020 Jan; 573():118810. PubMed ID: 31678522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of process variables on the Drucker-Prager cap model and residual stress distribution of tablets estimated by the finite element method.
    Hayashi Y; Otoguro S; Miura T; Onuki Y; Obata Y; Takayama K
    Chem Pharm Bull (Tokyo); 2014; 62(11):1062-72. PubMed ID: 25109913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical Investigation of the Residual Stress Distribution of Flat-Faced and Convexly Curved Tablets Using the Finite Element Method.
    Otoguro S; Hayashi Y; Miura T; Uehara N; Utsumi S; Onuki Y; Obata Y; Takayama K
    Chem Pharm Bull (Tokyo); 2015; 63(11):890-900. PubMed ID: 26279237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image analysis quantification of sticking and picking events of pharmaceutical powders compressed on a rotary tablet press simulator.
    Mollereau G; Mazel V; Busignies V; Tchoreloff P; Mouveaux F; Rivière P
    Pharm Res; 2013 Sep; 30(9):2303-14. PubMed ID: 23797462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compaction behavior and deformation mechanism of directly compressible textured mannitol in a rotary tablet press simulator.
    Tarlier N; Soulairol I; Bataille B; Baylac G; Ravel P; Nofrerias I; Lefèvre P; Sharkawi T
    Int J Pharm; 2015 Nov; 495(1):410-419. PubMed ID: 26363108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and modeling of the viscoelasticity of pharmaceutical tablets.
    Desbois L; Tchoreloff P; Mazel V
    Int J Pharm; 2020 Sep; 587():119695. PubMed ID: 32730803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.