These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Formation Mechanism of Cofactor Cys-Tyr in the Cysteine Dioxygenases (CDO and F Wang Y; Yan L; Li X; Zhang S; Wei J; Liu Y Inorg Chem; 2021 Jun; 60(11):7844-7856. PubMed ID: 34008401 [TBL] [Abstract][Full Text] [Related]
5. Probing the Cys-Tyr Cofactor Biogenesis in Cysteine Dioxygenase by the Genetic Incorporation of Fluorotyrosine. Li J; Koto T; Davis I; Liu A Biochemistry; 2019 Apr; 58(17):2218-2227. PubMed ID: 30946568 [TBL] [Abstract][Full Text] [Related]
6. Theoretical study on the mechanism of the oxygen activation process in cysteine dioxygenase enzymes. Kumar D; Thiel W; de Visser SP J Am Chem Soc; 2011 Mar; 133(11):3869-82. PubMed ID: 21344861 [TBL] [Abstract][Full Text] [Related]
7. Structures of Arg- and Gln-type bacterial cysteine dioxygenase homologs. Driggers CM; Hartman SJ; Karplus PA Protein Sci; 2015 Jan; 24(1):154-61. PubMed ID: 25307852 [TBL] [Abstract][Full Text] [Related]
8. Involvement of the Cys-Tyr cofactor on iron binding in the active site of human cysteine dioxygenase. Arjune S; Schwarz G; Belaidi AA Amino Acids; 2015 Jan; 47(1):55-63. PubMed ID: 25261132 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the nitrosyl adduct of substrate-bound mouse cysteine dioxygenase by electron paramagnetic resonance: electronic structure of the active site and mechanistic implications. Pierce BS; Gardner JD; Bailey LJ; Brunold TC; Fox BG Biochemistry; 2007 Jul; 46(29):8569-78. PubMed ID: 17602574 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic implications of persulfenate and persulfide binding in the active site of cysteine dioxygenase. Souness RJ; Kleffmann T; Tchesnokov EP; Wilbanks SM; Jameson GB; Jameson GN Biochemistry; 2013 Oct; 52(43):7606-17. PubMed ID: 24084026 [TBL] [Abstract][Full Text] [Related]
11. Spectroscopic and Computational Investigation of the H155A Variant of Cysteine Dioxygenase: Geometric and Electronic Consequences of a Third-Sphere Amino Acid Substitution. Blaesi EJ; Fox BG; Brunold TC Biochemistry; 2015 May; 54(18):2874-84. PubMed ID: 25897562 [TBL] [Abstract][Full Text] [Related]
12. Single turnover of substrate-bound ferric cysteine dioxygenase with superoxide anion: enzymatic reactivation, product formation, and a transient intermediate. Crawford JA; Li W; Pierce BS Biochemistry; 2011 Nov; 50(47):10241-53. PubMed ID: 21992268 [TBL] [Abstract][Full Text] [Related]
13. Second-sphere interactions between the C93-Y157 cross-link and the substrate-bound Fe site influence the O₂ coupling efficiency in mouse cysteine dioxygenase. Li W; Blaesi EJ; Pecore MD; Crowell JK; Pierce BS Biochemistry; 2013 Dec; 52(51):9104-19. PubMed ID: 24279989 [TBL] [Abstract][Full Text] [Related]
14. Oxidative uncoupling in cysteine dioxygenase is gated by a proton-sensitive intermediate. Crowell JK; Li W; Pierce BS Biochemistry; 2014 Dec; 53(48):7541-8. PubMed ID: 25387045 [TBL] [Abstract][Full Text] [Related]
15. Shifting redox states of the iron center partitions CDO between crosslink formation or cysteine oxidation. Njeri CW; Ellis HR Arch Biochem Biophys; 2014 Sep; 558():61-9. PubMed ID: 24929188 [TBL] [Abstract][Full Text] [Related]
16. Why do cysteine dioxygenase enzymes contain a 3-His ligand motif rather than a 2His/1Asp motif like most nonheme dioxygenases? de Visser SP; Straganz GD J Phys Chem A; 2009 Mar; 113(9):1835-46. PubMed ID: 19199799 [TBL] [Abstract][Full Text] [Related]
17. Spectroscopic and computational studies of reversible O Fischer AA; Lindeman SV; Fiedler AT Dalton Trans; 2017 Oct; 46(39):13229-13241. PubMed ID: 28686274 [TBL] [Abstract][Full Text] [Related]
18. The 3-His Metal Coordination Site Promotes the Coupling of Oxygen Activation to Cysteine Oxidation in Cysteine Dioxygenase. Forbes DL; Meneely KM; Chilton AS; Lamb AL; Ellis HR Biochemistry; 2020 Jun; 59(21):2022-2031. PubMed ID: 32368901 [TBL] [Abstract][Full Text] [Related]
19. Spectroscopic and computational investigation of iron(III) cysteine dioxygenase: implications for the nature of the putative superoxo-Fe(III) intermediate. Blaesi EJ; Fox BG; Brunold TC Biochemistry; 2014 Sep; 53(36):5759-70. PubMed ID: 25093959 [TBL] [Abstract][Full Text] [Related]
20. Preparation, crystallization and X-ray diffraction analysis to 1.5 A resolution of rat cysteine dioxygenase, a mononuclear iron enzyme responsible for cysteine thiol oxidation. Simmons CR; Hao Q; Stipanuk MH Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Nov; 61(Pt 11):1013-6. PubMed ID: 16511222 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]