BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 23747974)

  • 1. Structural determinants of oligomerization of δ(1)-pyrroline-5-carboxylate dehydrogenase: identification of a hexamerization hot spot.
    Luo M; Singh RK; Tanner JJ
    J Mol Biol; 2013 Sep; 425(17):3106-20. PubMed ID: 23747974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of Thermus thermophilus Delta1-pyrroline-5-carboxylate dehydrogenase.
    Inagaki E; Ohshima N; Takahashi H; Kuroishi C; Yokoyama S; Tahirov TH
    J Mol Biol; 2006 Sep; 362(3):490-501. PubMed ID: 16934832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First evidence for substrate channeling between proline catabolic enzymes: a validation of domain fusion analysis for predicting protein-protein interactions.
    Sanyal N; Arentson BW; Luo M; Tanner JJ; Becker DF
    J Biol Chem; 2015 Jan; 290(4):2225-34. PubMed ID: 25492892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural studies of yeast Δ(1)-pyrroline-5-carboxylate dehydrogenase (ALDH4A1): active site flexibility and oligomeric state.
    Pemberton TA; Srivastava D; Sanyal N; Henzl MT; Becker DF; Tanner JJ
    Biochemistry; 2014 Mar; 53(8):1350-9. PubMed ID: 24502590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that the C-terminal domain of a type B PutA protein contributes to aldehyde dehydrogenase activity and substrate channeling.
    Luo M; Christgen S; Sanyal N; Arentson BW; Becker DF; Tanner JJ
    Biochemistry; 2014 Sep; 53(35):5661-73. PubMed ID: 25137435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for hysteretic substrate channeling in the proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase coupled reaction of proline utilization A (PutA).
    Moxley MA; Sanyal N; Krishnan N; Tanner JJ; Becker DF
    J Biol Chem; 2014 Feb; 289(6):3639-51. PubMed ID: 24352662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Δ(1)-pyrroline-5-carboxylate/glutamate biogenesis is required for fungal virulence and sporulation.
    Yao Z; Zou C; Zhou H; Wang J; Lu L; Li Y; Chen B
    PLoS One; 2013; 8(9):e73483. PubMed ID: 24039956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis of substrate selectivity of Δ(1)-pyrroline-5-carboxylate dehydrogenase (ALDH4A1): semialdehyde chain length.
    Pemberton TA; Tanner JJ
    Arch Biochem Biophys; 2013 Oct; 538(1):34-40. PubMed ID: 23928095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New insights into the binding mode of coenzymes: structure of Thermus thermophilus Delta1-pyrroline-5-carboxylate dehydrogenase complexed with NADP+.
    Inagaki E; Ohshima N; Sakamoto K; Babayeva ND; Kato H; Yokoyama S; Tahirov TH
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2007 Jun; 63(Pt 6):462-5. PubMed ID: 17554163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the bifunctional proline utilization A flavoenzyme from Bradyrhizobium japonicum.
    Srivastava D; Schuermann JP; White TA; Krishnan N; Sanyal N; Hura GL; Tan A; Henzl MT; Becker DF; Tanner JJ
    Proc Natl Acad Sci U S A; 2010 Feb; 107(7):2878-83. PubMed ID: 20133651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning, characterization, and expression of cDNAs encoding human delta 1-pyrroline-5-carboxylate dehydrogenase.
    Hu CA; Lin WW; Valle D
    J Biol Chem; 1996 Apr; 271(16):9795-800. PubMed ID: 8621661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The three-dimensional structural basis of type II hyperprolinemia.
    Srivastava D; Singh RK; Moxley MA; Henzl MT; Becker DF; Tanner JJ
    J Mol Biol; 2012 Jul; 420(3):176-89. PubMed ID: 22516612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure.
    Korasick DA; Singh H; Pemberton TA; Luo M; Dhatwalia R; Tanner JJ
    FEBS J; 2017 Sep; 284(18):3029-3049. PubMed ID: 28710792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrroline-5-carboxylate metabolism protein complex detected in Arabidopsis thaliana leaf mitochondria.
    Zheng Y; Cabassa-Hourton C; Eubel H; Chevreux G; Lignieres L; Crilat E; Braun HP; Lebreton S; Savouré A
    J Exp Bot; 2024 Feb; 75(3):917-934. PubMed ID: 37843921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures of Proline Utilization A (PutA) Reveal the Fold and Functions of the Aldehyde Dehydrogenase Superfamily Domain of Unknown Function.
    Luo M; Gamage TT; Arentson BW; Schlasner KN; Becker DF; Tanner JJ
    J Biol Chem; 2016 Nov; 291(46):24065-24075. PubMed ID: 27679491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes.
    Miller G; Honig A; Stein H; Suzuki N; Mittler R; Zilberstein A
    J Biol Chem; 2009 Sep; 284(39):26482-92. PubMed ID: 19635803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and kinetics of monofunctional proline dehydrogenase from Thermus thermophilus.
    White TA; Krishnan N; Becker DF; Tanner JJ
    J Biol Chem; 2007 May; 282(19):14316-27. PubMed ID: 17344208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and structural characterization of tunnel-perturbing mutants in Bradyrhizobium japonicum proline utilization A.
    Arentson BW; Luo M; Pemberton TA; Tanner JJ; Becker DF
    Biochemistry; 2014 Aug; 53(31):5150-61. PubMed ID: 25046425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is rat LRRP Ba1-651 a Delta-1-pyrroline-5-carboxylate dehydrogenase activated by changes in the concentration of sweet molecules?
    Tizzano M; Sbarbati A
    Med Hypotheses; 2007; 68(4):864-7. PubMed ID: 17056186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure, function, and mechanism of proline utilization A (PutA).
    Liu LK; Becker DF; Tanner JJ
    Arch Biochem Biophys; 2017 Oct; 632():142-157. PubMed ID: 28712849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.