BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

487 related articles for article (PubMed ID: 23748139)

  • 1. Sulfenic acid chemistry, detection and cellular lifetime.
    Gupta V; Carroll KS
    Biochim Biophys Acta; 2014 Feb; 1840(2):847-75. PubMed ID: 23748139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent and affinity-based tools to detect cysteine sulfenic acid formation in proteins.
    Poole LB; Klomsiri C; Knaggs SA; Furdui CM; Nelson KJ; Thomas MJ; Fetrow JS; Daniel LW; King SB
    Bioconjug Chem; 2007; 18(6):2004-17. PubMed ID: 18030992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids.
    Reisz JA; Bechtold E; King SB; Poole LB; Furdui CM
    FEBS J; 2013 Dec; 280(23):6150-61. PubMed ID: 24103186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical aspects of hydrogen sulfide measurements in physiological samples.
    Nagy P; Pálinkás Z; Nagy A; Budai B; Tóth I; Vasas A
    Biochim Biophys Acta; 2014 Feb; 1840(2):876-91. PubMed ID: 23769856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strained cycloalkynes as new protein sulfenic acid traps.
    Poole TH; Reisz JA; Zhao W; Poole LB; Furdui CM; King SB
    J Am Chem Soc; 2014 Apr; 136(17):6167-70. PubMed ID: 24724926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological chemistry and functionality of protein sulfenic acids and related thiol modifications.
    Devarie-Baez NO; Silva Lopez EI; Furdui CM
    Free Radic Res; 2016; 50(2):172-94. PubMed ID: 26340608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical approaches to detect and analyze protein sulfenic acids.
    Furdui CM; Poole LB
    Mass Spectrom Rev; 2014; 33(2):126-46. PubMed ID: 24105931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation, reactivity, and detection of protein sulfenic acids.
    Kettenhofen NJ; Wood MJ
    Chem Res Toxicol; 2010 Nov; 23(11):1633-46. PubMed ID: 20845928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of chemical probes to map sulfenic acid modifications on proteins.
    Poole LB; Zeng BB; Knaggs SA; Yakubu M; King SB
    Bioconjug Chem; 2005; 16(6):1624-8. PubMed ID: 16287263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Chemical approaches for trapping protein thiols and their oxidative modification].
    Huang CS; Zhu WP; Xu YF; Qian XH
    Yao Xue Xue Bao; 2012 Mar; 47(3):280-90. PubMed ID: 22645750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of dimedone-based chemical probes for sulfenic acid detection evaluation of conditions affecting probe incorporation into redox-sensitive proteins.
    Klomsiri C; Nelson KJ; Bechtold E; Soito L; Johnson LC; Lowther WT; Ryu SE; King SB; Furdui CM; Poole LB
    Methods Enzymol; 2010; 473():77-94. PubMed ID: 20513472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triphenylphosphonium-Derived Protein Sulfenic Acid Trapping Agents: Synthesis, Reactivity, and Effect on Mitochondrial Function.
    Li Z; Forshaw TE; Holmila RJ; Vance SA; Wu H; Poole LB; Furdui CM; King SB
    Chem Res Toxicol; 2019 Mar; 32(3):526-534. PubMed ID: 30784263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using DCP-Rho1 as a fluorescent probe to visualize sulfenic acid-containing proteins in living plant cells.
    Lara-Rojas F; Sarmiento-López LG; Pascual-Morales E; Ryken SE; Bezanilla M; Cardenas L
    Methods Enzymol; 2023; 683():291-308. PubMed ID: 37087193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel evaluation of nucleophilic and electrophilic chemical probes for sulfenic acid: Reactivity, selectivity and biocompatibility.
    Shi Y; Carroll KS
    Redox Biol; 2021 Oct; 46():102072. PubMed ID: 34298464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox-sensitive sulfenic acid modification regulates surface expression of the cardiovascular voltage-gated potassium channel Kv1.5.
    Svoboda LK; Reddie KG; Zhang L; Vesely ED; Williams ES; Schumacher SM; O'Connell RP; Shaw R; Day SM; Anumonwo JM; Carroll KS; Martens JR
    Circ Res; 2012 Sep; 111(7):842-53. PubMed ID: 22843785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The redox biochemistry of protein sulfenylation and sulfinylation.
    Lo Conte M; Carroll KS
    J Biol Chem; 2013 Sep; 288(37):26480-8. PubMed ID: 23861405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of sulfenic acids in cellular redox signaling: Reconciling chemical kinetics and molecular detection strategies.
    Heppner DE; Janssen-Heininger YMW; van der Vliet A
    Arch Biochem Biophys; 2017 Feb; 616():40-46. PubMed ID: 28126370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells.
    Winterbourn CC
    Biochim Biophys Acta; 2014 Feb; 1840(2):730-8. PubMed ID: 23665586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of dimedone-based chemical probes for sulfenic acid detection methods to visualize and identify labeled proteins.
    Nelson KJ; Klomsiri C; Codreanu SG; Soito L; Liebler DC; Rogers LC; Daniel LW; Poole LB
    Methods Enzymol; 2010; 473():95-115. PubMed ID: 20513473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and Use of the Bifunctional Sulfenic Acid Probe BCN-E-BCN for In Vitro and Cell-Based Assays of Protein Oxidation.
    Micovic K; Satkunarajah T; Carnet A; Hurst M; Viirre R; Olson MF
    Curr Protoc; 2022 Oct; 2(10):e559. PubMed ID: 36200822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.