These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Fluorescent and affinity-based tools to detect cysteine sulfenic acid formation in proteins. Poole LB; Klomsiri C; Knaggs SA; Furdui CM; Nelson KJ; Thomas MJ; Fetrow JS; Daniel LW; King SB Bioconjug Chem; 2007; 18(6):2004-17. PubMed ID: 18030992 [TBL] [Abstract][Full Text] [Related]
3. Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids. Reisz JA; Bechtold E; King SB; Poole LB; Furdui CM FEBS J; 2013 Dec; 280(23):6150-61. PubMed ID: 24103186 [TBL] [Abstract][Full Text] [Related]
4. Chemical aspects of hydrogen sulfide measurements in physiological samples. Nagy P; Pálinkás Z; Nagy A; Budai B; Tóth I; Vasas A Biochim Biophys Acta; 2014 Feb; 1840(2):876-91. PubMed ID: 23769856 [TBL] [Abstract][Full Text] [Related]
5. Strained cycloalkynes as new protein sulfenic acid traps. Poole TH; Reisz JA; Zhao W; Poole LB; Furdui CM; King SB J Am Chem Soc; 2014 Apr; 136(17):6167-70. PubMed ID: 24724926 [TBL] [Abstract][Full Text] [Related]
6. Biological chemistry and functionality of protein sulfenic acids and related thiol modifications. Devarie-Baez NO; Silva Lopez EI; Furdui CM Free Radic Res; 2016; 50(2):172-94. PubMed ID: 26340608 [TBL] [Abstract][Full Text] [Related]
7. Chemical approaches to detect and analyze protein sulfenic acids. Furdui CM; Poole LB Mass Spectrom Rev; 2014; 33(2):126-46. PubMed ID: 24105931 [TBL] [Abstract][Full Text] [Related]
8. Formation, reactivity, and detection of protein sulfenic acids. Kettenhofen NJ; Wood MJ Chem Res Toxicol; 2010 Nov; 23(11):1633-46. PubMed ID: 20845928 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of chemical probes to map sulfenic acid modifications on proteins. Poole LB; Zeng BB; Knaggs SA; Yakubu M; King SB Bioconjug Chem; 2005; 16(6):1624-8. PubMed ID: 16287263 [TBL] [Abstract][Full Text] [Related]
10. [Chemical approaches for trapping protein thiols and their oxidative modification]. Huang CS; Zhu WP; Xu YF; Qian XH Yao Xue Xue Bao; 2012 Mar; 47(3):280-90. PubMed ID: 22645750 [TBL] [Abstract][Full Text] [Related]
11. Use of dimedone-based chemical probes for sulfenic acid detection evaluation of conditions affecting probe incorporation into redox-sensitive proteins. Klomsiri C; Nelson KJ; Bechtold E; Soito L; Johnson LC; Lowther WT; Ryu SE; King SB; Furdui CM; Poole LB Methods Enzymol; 2010; 473():77-94. PubMed ID: 20513472 [TBL] [Abstract][Full Text] [Related]
12. Triphenylphosphonium-Derived Protein Sulfenic Acid Trapping Agents: Synthesis, Reactivity, and Effect on Mitochondrial Function. Li Z; Forshaw TE; Holmila RJ; Vance SA; Wu H; Poole LB; Furdui CM; King SB Chem Res Toxicol; 2019 Mar; 32(3):526-534. PubMed ID: 30784263 [TBL] [Abstract][Full Text] [Related]
13. Using DCP-Rho1 as a fluorescent probe to visualize sulfenic acid-containing proteins in living plant cells. Lara-Rojas F; Sarmiento-López LG; Pascual-Morales E; Ryken SE; Bezanilla M; Cardenas L Methods Enzymol; 2023; 683():291-308. PubMed ID: 37087193 [TBL] [Abstract][Full Text] [Related]
14. Parallel evaluation of nucleophilic and electrophilic chemical probes for sulfenic acid: Reactivity, selectivity and biocompatibility. Shi Y; Carroll KS Redox Biol; 2021 Oct; 46():102072. PubMed ID: 34298464 [TBL] [Abstract][Full Text] [Related]
15. Redox-sensitive sulfenic acid modification regulates surface expression of the cardiovascular voltage-gated potassium channel Kv1.5. Svoboda LK; Reddie KG; Zhang L; Vesely ED; Williams ES; Schumacher SM; O'Connell RP; Shaw R; Day SM; Anumonwo JM; Carroll KS; Martens JR Circ Res; 2012 Sep; 111(7):842-53. PubMed ID: 22843785 [TBL] [Abstract][Full Text] [Related]
16. The redox biochemistry of protein sulfenylation and sulfinylation. Lo Conte M; Carroll KS J Biol Chem; 2013 Sep; 288(37):26480-8. PubMed ID: 23861405 [TBL] [Abstract][Full Text] [Related]
17. The role of sulfenic acids in cellular redox signaling: Reconciling chemical kinetics and molecular detection strategies. Heppner DE; Janssen-Heininger YMW; van der Vliet A Arch Biochem Biophys; 2017 Feb; 616():40-46. PubMed ID: 28126370 [TBL] [Abstract][Full Text] [Related]
18. The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Winterbourn CC Biochim Biophys Acta; 2014 Feb; 1840(2):730-8. PubMed ID: 23665586 [TBL] [Abstract][Full Text] [Related]
19. Use of dimedone-based chemical probes for sulfenic acid detection methods to visualize and identify labeled proteins. Nelson KJ; Klomsiri C; Codreanu SG; Soito L; Liebler DC; Rogers LC; Daniel LW; Poole LB Methods Enzymol; 2010; 473():95-115. PubMed ID: 20513473 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and Use of the Bifunctional Sulfenic Acid Probe BCN-E-BCN for In Vitro and Cell-Based Assays of Protein Oxidation. Micovic K; Satkunarajah T; Carnet A; Hurst M; Viirre R; Olson MF Curr Protoc; 2022 Oct; 2(10):e559. PubMed ID: 36200822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]