These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 23748446)

  • 1. Time-based comparative transcriptomics in engineered xylose-utilizing Saccharomyces cerevisiae identifies temperature-responsive genes during ethanol production.
    Ismail KS; Sakamoto T; Hasunuma T; Kondo A
    J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1039-50. PubMed ID: 23748446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xylose Fermentation by Saccharomyces cerevisiae: Challenges and Prospects.
    Moysés DN; Reis VC; de Almeida JR; de Moraes LM; Torres FA
    Int J Mol Sci; 2016 Feb; 17(3):207. PubMed ID: 26927067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Saccharomyces cerevisiae for second-generation ethanol production from xylo-oligosaccharides and acetate.
    Procópio DP; Lee JW; Shin J; Tramontina R; Ávila PF; Brenelli LB; Squina FM; Damasio A; Rabelo SC; Goldbeck R; Franco TT; Leak D; Jin YS; Basso TO
    Sci Rep; 2023 Nov; 13(1):19182. PubMed ID: 37932303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered yeast with a CO
    Li YJ; Wang MM; Chen YW; Wang M; Fan LH; Tan TW
    Sci Rep; 2017 Mar; 7():43875. PubMed ID: 28262754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. D-Xylose Sensing in
    Brink DP; Borgström C; Persson VC; Ofuji Osiro K; Gorwa-Grauslund MF
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of an inactive xylose isomerase into a functional enzyme by co-expression of GroEL-GroES chaperonins in Saccharomyces cerevisiae.
    Temer B; Dos Santos LV; Negri VA; Galhardo JP; Magalhães PHM; José J; Marschalk C; Corrêa TLR; Carazzolle MF; Pereira GAG
    BMC Biotechnol; 2017 Sep; 17(1):71. PubMed ID: 28888227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae.
    Wenger JW; Schwartz K; Sherlock G
    PLoS Genet; 2010 May; 6(5):e1000942. PubMed ID: 20485559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae.
    Ma M; Liu LZ
    BMC Microbiol; 2010 Jun; 10():169. PubMed ID: 20537179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion of the
    Chen X; Lu Z; Chen Y; Wu R; Luo Z; Lu Q; Guan N; Chen D
    Microbiol Spectr; 2021 Sep; 9(1):e0008821. PubMed ID: 34346754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combinatorial design of a highly efficient xylose-utilizing pathway in Saccharomyces cerevisiae for the production of cellulosic biofuels.
    Kim B; Du J; Eriksen DT; Zhao H
    Appl Environ Microbiol; 2013 Feb; 79(3):931-41. PubMed ID: 23183982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maltose accumulation-induced cell death in Saccharomyces cerevisiae.
    Zhang X; Nijland JG; Driessen AJM
    FEMS Yeast Res; 2024 Jan; 24():. PubMed ID: 38565313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering and transcriptomic analysis of Saccharomyces cerevisiae producing p-coumaric acid from xylose.
    Borja GM; Rodriguez A; Campbell K; Borodina I; Chen Y; Nielsen J
    Microb Cell Fact; 2019 Nov; 18(1):191. PubMed ID: 31690329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of xylose-utilizing yeasts from oil palm waste for xylitol and ethanol production.
    Kusumawati N; Sumarlan SH; Zubaidah E; Wardani AK
    Bioresour Bioprocess; 2023 Oct; 10(1):71. PubMed ID: 38647966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of an economical xylose-utilizing Saccharomyces cerevisiae and its ethanol fermentation.
    Li F; Bai W; Zhang Y; Zhang Z; Zhang D; Shen N; Yuan J; Zhao G; Wang X
    FEMS Yeast Res; 2024 Jan; 24():. PubMed ID: 38268490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into cell robustness against lignocellulosic inhibitors and insoluble solids in bioethanol production processes.
    Moreno AD; González-Fernández C; Tomás-Pejó E
    Sci Rep; 2022 Jan; 12(1):557. PubMed ID: 35017613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae.
    Palermo GCL; Coutouné N; Bueno JGR; Maciel LF; Dos Santos LV
    Microb Biotechnol; 2021 Sep; 14(5):2101-2115. PubMed ID: 34313008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EasyClone 2.0: expanded toolkit of integrative vectors for stable gene expression in industrial Saccharomyces cerevisiae strains.
    Stovicek V; Borja GM; Forster J; Borodina I
    J Ind Microbiol Biotechnol; 2015 Nov; 42(11):1519-31. PubMed ID: 26376869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofuels. Engineering alcohol tolerance in yeast.
    Lam FH; Ghaderi A; Fink GR; Stephanopoulos G
    Science; 2014 Oct; 346(6205):71-5. PubMed ID: 25278607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consolidated bioprocessing of corn cob-derived hemicellulose: engineered industrial
    Cunha JT; Romaní A; Inokuma K; Johansson B; Hasunuma T; Kondo A; Domingues L
    Biotechnol Biofuels; 2020; 13():138. PubMed ID: 32782474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell periphery-related proteins as major genomic targets behind the adaptive evolution of an industrial Saccharomyces cerevisiae strain to combined heat and hydrolysate stress.
    Wallace-Salinas V; Brink DP; Ahrén D; Gorwa-Grauslund MF
    BMC Genomics; 2015 Jul; 16(1):514. PubMed ID: 26156140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.