These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 23748446)
1. Time-based comparative transcriptomics in engineered xylose-utilizing Saccharomyces cerevisiae identifies temperature-responsive genes during ethanol production. Ismail KS; Sakamoto T; Hasunuma T; Kondo A J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1039-50. PubMed ID: 23748446 [TBL] [Abstract][Full Text] [Related]
2. Gene expression cross-profiling in genetically modified industrial Saccharomyces cerevisiae strains during high-temperature ethanol production from xylose. Ismail KS; Sakamoto T; Hatanaka H; Hasunuma T; Kondo A J Biotechnol; 2013 Jan; 163(1):50-60. PubMed ID: 23131464 [TBL] [Abstract][Full Text] [Related]
3. Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae. Zha J; Li BZ; Shen MH; Hu ML; Song H; Yuan YJ PLoS One; 2013; 8(7):e68317. PubMed ID: 23844185 [TBL] [Abstract][Full Text] [Related]
4. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway. Ishii J; Yoshimura K; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007 [TBL] [Abstract][Full Text] [Related]
5. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Gonçalves DL; Matsushika A; de Sales BB; Goshima T; Bon EP; Stambuk BU Enzyme Microb Technol; 2014 Sep; 63():13-20. PubMed ID: 25039054 [TBL] [Abstract][Full Text] [Related]
6. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase. Matsushika A; Sawayama S Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018 [TBL] [Abstract][Full Text] [Related]
7. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Kim SR; Ha SJ; Kong II; Jin YS Metab Eng; 2012 Jul; 14(4):336-43. PubMed ID: 22521925 [TBL] [Abstract][Full Text] [Related]
8. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. Lee SH; Kodaki T; Park YC; Seo JH J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927 [TBL] [Abstract][Full Text] [Related]
9. Engineered Huang M; Cui X; Zhang P; Jin Z; Li H; Liu J; Jiang Z Prep Biochem Biotechnol; 2024 Sep; 54(8):1058-1067. PubMed ID: 38349751 [TBL] [Abstract][Full Text] [Related]
10. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100 [TBL] [Abstract][Full Text] [Related]
11. Deletion of FPS1, encoding aquaglyceroporin Fps1p, improves xylose fermentation by engineered Saccharomyces cerevisiae. Wei N; Xu H; Kim SR; Jin YS Appl Environ Microbiol; 2013 May; 79(10):3193-201. PubMed ID: 23475614 [TBL] [Abstract][Full Text] [Related]
12. Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro. Ha SJ; Kim SR; Choi JH; Park MS; Jin YS Appl Microbiol Biotechnol; 2011 Oct; 92(1):77-84. PubMed ID: 21655987 [TBL] [Abstract][Full Text] [Related]
13. A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation. Bera AK; Ho NW; Khan A; Sedlak M J Ind Microbiol Biotechnol; 2011 May; 38(5):617-26. PubMed ID: 20714780 [TBL] [Abstract][Full Text] [Related]
14. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. Hasunuma T; Ismail KSK; Nambu Y; Kondo A J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856 [TBL] [Abstract][Full Text] [Related]
15. Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose. Matsushika A; Goshima T; Hoshino T Microb Cell Fact; 2014 Jan; 13():16. PubMed ID: 24467867 [TBL] [Abstract][Full Text] [Related]
16. Improved Xylose Metabolism by a Nijland JG; Shin HY; Boender LGM; de Waal PP; Klaassen P; Driessen AJM Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363963 [TBL] [Abstract][Full Text] [Related]
17. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. Zhang GC; Turner TL; Jin YS J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721 [TBL] [Abstract][Full Text] [Related]
18. Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37. Li YC; Mitsumasu K; Gou ZX; Gou M; Tang YQ; Li GY; Wu XL; Akamatsu T; Taguchi H; Kida K Appl Microbiol Biotechnol; 2016 Feb; 100(3):1531-1542. PubMed ID: 26603762 [TBL] [Abstract][Full Text] [Related]
19. Sugar consumption and ethanol fermentation by transporter-overexpressed xylose-metabolizing Saccharomyces cerevisiae harboring a xyloseisomerase pathway. Tanino T; Ito T; Ogino C; Ohmura N; Ohshima T; Kondo A J Biosci Bioeng; 2012 Aug; 114(2):209-11. PubMed ID: 22591844 [TBL] [Abstract][Full Text] [Related]
20. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Verho R; Londesborough J; Penttilä M; Richard P Appl Environ Microbiol; 2003 Oct; 69(10):5892-7. PubMed ID: 14532041 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]