BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 23748672)

  • 1. Evolution of a designed retro-aldolase leads to complete active site remodeling.
    Giger L; Caner S; Obexer R; Kast P; Baker D; Ban N; Hilvert D
    Nat Chem Biol; 2013 Aug; 9(8):494-8. PubMed ID: 23748672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust design and optimization of retroaldol enzymes.
    Althoff EA; Wang L; Jiang L; Giger L; Lassila JK; Wang Z; Smith M; Hari S; Kast P; Herschlag D; Hilvert D; Baker D
    Protein Sci; 2012 May; 21(5):717-26. PubMed ID: 22407837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed evolution of a new catalytic site in 2-keto-3-deoxy-6-phosphogluconate aldolase from Escherichia coli.
    Wymer N; Buchanan LV; Henderson D; Mehta N; Botting CH; Pocivavsek L; Fierke CA; Toone EJ; Naismith JH
    Structure; 2001 Jan; 9(1):1-9. PubMed ID: 11342129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast Knoevenagel Condensations Catalyzed by an Artificial Schiff-Base-Forming Enzyme.
    Garrabou X; Wicky BI; Hilvert D
    J Am Chem Soc; 2016 Jun; 138(22):6972-4. PubMed ID: 27196438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo computational design of retro-aldol enzymes.
    Jiang L; Althoff EA; Clemente FR; Doyle L; Röthlisberger D; Zanghellini A; Gallaher JL; Betker JL; Tanaka F; Barbas CF; Hilvert D; Houk KN; Stoddard BL; Baker D
    Science; 2008 Mar; 319(5868):1387-91. PubMed ID: 18323453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving upon nature: active site remodeling produces highly efficient aldolase activity toward hydrophobic electrophilic substrates.
    Cheriyan M; Toone EJ; Fierke CA
    Biochemistry; 2012 Feb; 51(8):1658-68. PubMed ID: 22316217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantiocomplementary Synthesis of γ-Nitroketones Using Designed and Evolved Carboligases.
    Garrabou X; Verez R; Hilvert D
    J Am Chem Soc; 2017 Jan; 139(1):103-106. PubMed ID: 27992715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases.
    Zgiby SM; Thomson GJ; Qamar S; Berry A
    Eur J Biochem; 2000 Mar; 267(6):1858-68. PubMed ID: 10712619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering aldolases as biocatalysts.
    Windle CL; Müller M; Nelson A; Berry A
    Curr Opin Chem Biol; 2014 Apr; 19(100):25-33. PubMed ID: 24780276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed evolution of D-2-keto-3-deoxy-6-phosphogluconate aldolase to new variants for the efficient synthesis of D- and L-sugars.
    Fong S; Machajewski TD; Mak CC; Wong C
    Chem Biol; 2000 Nov; 7(11):873-83. PubMed ID: 11094340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed evolution of a pyruvate aldolase to recognize a long chain acyl substrate.
    Cheriyan M; Walters MJ; Kang BD; Anzaldi LL; Toone EJ; Fierke CA
    Bioorg Med Chem; 2011 Nov; 19(21):6447-53. PubMed ID: 21944547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the class I aldolase binding site architecture based on the crystal structure of 2-deoxyribose-5-phosphate aldolase at 0.99A resolution.
    Heine A; Luz JG; Wong CH; Wilson IA
    J Mol Biol; 2004 Oct; 343(4):1019-34. PubMed ID: 15476818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modifying the stereochemistry of an enzyme-catalyzed reaction by directed evolution.
    Williams GJ; Domann S; Nelson A; Berry A
    Proc Natl Acad Sci U S A; 2003 Mar; 100(6):3143-8. PubMed ID: 12626743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Promiscuous De Novo Retro-Aldolase Catalyzes Asymmetric Michael Additions via Schiff Base Intermediates.
    Garrabou X; Beck T; Hilvert D
    Angew Chem Int Ed Engl; 2015 May; 54(19):5609-12. PubMed ID: 25777153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalysis and binding in L-ribulose-5-phosphate 4-epimerase: a comparison with L-fuculose-1-phosphate aldolase.
    Samuel J; Luo Y; Morgan PM; Strynadka NC; Tanner ME
    Biochemistry; 2001 Dec; 40(49):14772-80. PubMed ID: 11732896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutagenesis of the phosphate-binding pocket of KDPG aldolase enhances selectivity for hydrophobic substrates.
    Cheriyan M; Toone EJ; Fierke CA
    Protein Sci; 2007 Nov; 16(11):2368-77. PubMed ID: 17962400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures of
    Seo PW; Ryu HC; Gu DH; Park HS; Park SY; Kim JS
    J Microbiol Biotechnol; 2018 Aug; 28(8):1339-1345. PubMed ID: 29943554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic Studies of the
    Mydy LS; Hoppe RW; Hagemann TM; Schwabacher AW; Silvaggi NR
    Biochemistry; 2019 Oct; 58(40):4136-4147. PubMed ID: 31524380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of electrostatic coupling throughout the laboratory evolution of a designed retroaldolase.
    Coulther TA; Pott M; Zeymer C; Hilvert D; Ondrechen MJ
    Protein Sci; 2021 Aug; 30(8):1617-1627. PubMed ID: 33938058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directed evolution of aldolases for exploitation in synthetic organic chemistry.
    Bolt A; Berry A; Nelson A
    Arch Biochem Biophys; 2008 Jun; 474(2):318-30. PubMed ID: 18230325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.