These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Pore fabrication in various silica-based nanoparticles by controlled etching. Zhao L; Zhao Y; Han Y Langmuir; 2010 Jul; 26(14):11784-9. PubMed ID: 20557087 [TBL] [Abstract][Full Text] [Related]
7. Fast fabrication of self-ordered anodic porous alumina on oriented aluminum grains by high acid concentration and high temperature anodization. Cheng C; Ngan AH Nanotechnology; 2013 May; 24(21):215602. PubMed ID: 23619572 [TBL] [Abstract][Full Text] [Related]
8. In situ fabrication of macroporous polymer networks within microfluidic devices by living radical photopolymerization and leaching. Simms HM; Brotherton CM; Good BT; Davis RH; Anseth KS; Bowman CN Lab Chip; 2005 Feb; 5(2):151-7. PubMed ID: 15672128 [TBL] [Abstract][Full Text] [Related]
9. Si-supported mesoporous and microporous oxide interconnects as electrophoretic gates for application in microfluidic devices. Schmuhl R; Nijdam W; Sekulić J; Chowdhury SR; van Rijn CJ; van den Berg A; ten Elshof JE; Blank DH Anal Chem; 2005 Jan; 77(1):178-84. PubMed ID: 15623294 [TBL] [Abstract][Full Text] [Related]
12. Fabrication and verification of a glass-silicon-glass micro-/nanofluidic model for investigating multi-phase flow in shale-like unconventional dual-porosity tight porous media. Zhang Y; Zhou C; Qu C; Wei M; He X; Bai B Lab Chip; 2019 Dec; 19(24):4071-4082. PubMed ID: 31702750 [TBL] [Abstract][Full Text] [Related]
13. Surface chemistry, reactivity, and pore structure of porous silicon oxidized by various methods. Riikonen J; Salomäki M; van Wonderen J; Kemell M; Xu W; Korhonen O; Ritala M; MacMillan F; Salonen J; Lehto VP Langmuir; 2012 Jul; 28(28):10573-83. PubMed ID: 22671967 [TBL] [Abstract][Full Text] [Related]
14. In situ determination of the pore opening point during wet-chemical etching of the barrier layer of porous anodic aluminum oxide: nonuniform impurity distribution in anodic oxide. Han H; Park SJ; Jang JS; Ryu H; Kim KJ; Baik S; Lee W ACS Appl Mater Interfaces; 2013 Apr; 5(8):3441-8. PubMed ID: 23521656 [TBL] [Abstract][Full Text] [Related]
15. Size Control of Porous Silicon-Based Nanoparticles via Pore-Wall Thinning. Secret E; Leonard C; Kelly SJ; Uhl A; Cozzan C; Andrew JS Langmuir; 2016 Feb; 32(4):1166-70. PubMed ID: 26796986 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional microfluidic channel with arbitrary length and configuration fabricated inside glass by femtosecond laser direct writing. Liao Y; Ju Y; Zhang L; He F; Zhang Q; Shen Y; Chen D; Cheng Y; Xu Z; Sugioka K; Midorikawa K Opt Lett; 2010 Oct; 35(19):3225-7. PubMed ID: 20890341 [TBL] [Abstract][Full Text] [Related]
18. Wafer-Scale Fabrication of Hierarchically Porous Silicon and Silica by Active Nanoparticle-Assisted Chemical Etching and Pseudomorphic Thermal Oxidation. Gries S; Brinker M; Zeller-Plumhoff B; Rings D; Krekeler T; Longo E; Greving I; Huber P Small; 2023 Jun; 19(22):e2206842. PubMed ID: 36794297 [TBL] [Abstract][Full Text] [Related]
19. Block Copolymer Patterning for Creating Porous Silicon Thin Films with Tunable Refractive Indices. Hulkkonen HH; Salminen T; Niemi T ACS Appl Mater Interfaces; 2017 Sep; 9(37):31260-31265. PubMed ID: 28195697 [TBL] [Abstract][Full Text] [Related]
20. Integration of lateral porous silicon membranes into planar microfluidics. Leïchlé T; Bourrier D Lab Chip; 2015 Feb; 15(3):833-8. PubMed ID: 25483271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]