BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23748699)

  • 1. Investigation of tryptophan-NADH interactions in live human cells using three-photon fluorescence lifetime imaging and Förster resonance energy transfer microscopy.
    Jyothikumar V; Sun Y; Periasamy A
    J Biomed Opt; 2013 Jun; 18(6):060501. PubMed ID: 23748699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H.
    Cao R; Wallrabe H; Siller K; Rehman Alam S; Periasamy A
    Cytometry A; 2019 Jan; 95(1):110-121. PubMed ID: 30604477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Fluorescence Lifetime Imaging (FLIM) to Measure Intracellular Environments in a Single Cell.
    Nakabayashi T; Awasthi K; Ohta N
    Adv Exp Med Biol; 2017; 1035():121-133. PubMed ID: 29080134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic FRET-FLIM based screening of signal transduction pathways.
    Harkes R; Kukk O; Mukherjee S; Klarenbeek J; van den Broek B; Jalink K
    Sci Rep; 2021 Oct; 11(1):20711. PubMed ID: 34671065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A feasible add-on upgrade on a commercial two-photon FLIM microscope for optimal FLIM-FRET imaging of CFP-YFP pairs.
    Xu L; Wang L; Zhang Z; Huang ZL
    J Fluoresc; 2013 May; 23(3):543-9. PubMed ID: 23456419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of Mitochondrial Metabolic Response to Doxorubicin in Prostate Cancer Cells: An NADH, FAD and Tryptophan FLIM Assay.
    Alam SR; Wallrabe H; Svindrych Z; Chaudhary AK; Christopher KG; Chandra D; Periasamy A
    Sci Rep; 2017 Sep; 7(1):10451. PubMed ID: 28874842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells.
    Padilla-Parra S; Audugé N; Coppey-Moisan M; Tramier M
    Biophys J; 2008 Sep; 95(6):2976-88. PubMed ID: 18539634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive optics for a time-resolved Förster resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM) in vivo.
    Coelho S; Poland SP; Devauges V; Ameer-Beg SM
    Opt Lett; 2020 May; 45(10):2732-2735. PubMed ID: 32412453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of FLIM-FRET for the detection of mitochondria-associated protein interactions.
    Osterlund EJ; Liu Q; Andrews DW
    Methods Mol Biol; 2015; 1264():395-419. PubMed ID: 25631031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative real-time imaging of intracellular FRET biosensor dynamics using rapid multi-beam confocal FLIM.
    Levitt JA; Poland SP; Krstajic N; Pfisterer K; Erdogan A; Barber PR; Parsons M; Henderson RK; Ameer-Beg SM
    Sci Rep; 2020 Mar; 10(1):5146. PubMed ID: 32198437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging in situ protein-DNA interactions in the cell nucleus using FRET-FLIM.
    Cremazy FG; Manders EM; Bastiaens PI; Kramer G; Hager GL; van Munster EB; Verschure PJ; Gadella TJ; van Driel R
    Exp Cell Res; 2005 Oct; 309(2):390-6. PubMed ID: 16040027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Imaging of BCL-2 Family Interactions in Live Cells Using FLIM-FRET.
    Osterlund EJ; Hirmiz N; Tardif C; Andrews DW
    Methods Mol Biol; 2019; 1877():305-335. PubMed ID: 30536013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FLIM-FRET Measurements of Protein-Protein Interactions in Live Bacteria.
    Manko H; Normant V; Perraud Q; Steffan T; Gasser V; Boutant E; Réal É; Schalk IJ; Mély Y; Godet J
    J Vis Exp; 2020 Aug; (162):. PubMed ID: 32925892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring protein interactions using Förster resonance energy transfer and fluorescence lifetime imaging microscopy.
    Day RN
    Methods; 2014 Mar; 66(2):200-7. PubMed ID: 23806643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-resolved spectroscopic imaging reveals the fundamentals of cellular NADH fluorescence.
    Li D; Zheng W; Qu JY
    Opt Lett; 2008 Oct; 33(20):2365-7. PubMed ID: 18923624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid global fitting of large fluorescence lifetime imaging microscopy datasets.
    Warren SC; Margineanu A; Alibhai D; Kelly DJ; Talbot C; Alexandrov Y; Munro I; Katan M; Dunsby C; French PM
    PLoS One; 2013; 8(8):e70687. PubMed ID: 23940626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring NLR Oligomerization IV: Using Förster Resonance Energy Transfer (FRET)-Fluorescence Lifetime Imaging Microscopy (FLIM) to Determine the Close Proximity of Inflammasome Components.
    Youssif C; Flix B; Belbin O; Comalada M
    Methods Mol Biol; 2016; 1417():169-83. PubMed ID: 27221489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH.
    Bird DK; Yan L; Vrotsos KM; Eliceiri KW; Vaughan EM; Keely PJ; White JG; Ramanujam N
    Cancer Res; 2005 Oct; 65(19):8766-73. PubMed ID: 16204046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vivo Interaction Studies by Measuring Förster Resonance Energy Transfer Through Fluorescence Lifetime Imaging Microscopy (FRET/FLIM).
    Fäßler F; Pimpl P
    Methods Mol Biol; 2017; 1662():159-170. PubMed ID: 28861826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated fluorescence lifetime imaging plate reader and its application to Förster resonant energy transfer readout of Gag protein aggregation.
    Alibhai D; Kelly DJ; Warren S; Kumar S; Margineau A; Serwa RA; Thinon E; Alexandrov Y; Murray EJ; Stuhmeier F; Tate EW; Neil MA; Dunsby C; French PM
    J Biophotonics; 2013 May; 6(5):398-408. PubMed ID: 23184449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.