These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23748754)

  • 1. Production of 8-hydroxydaidzein from soybean extract by Aspergillus oryzae KACC 40247.
    Seo MH; Kim BN; Kim KR; Lee KW; Lee CH; Oh DK
    Biosci Biotechnol Biochem; 2013; 77(6):1245-50. PubMed ID: 23748754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deglycosylation of isoflavones in isoflavone-rich soy germ flour by Aspergillus oryzae KACC 40247.
    Lee SH; Seo MH; Oh DK
    J Agric Food Chem; 2013 Dec; 61(49):12101-10. PubMed ID: 24266868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of the soy isoflavones daidzein and genistein by fungi used in the preparation of various fermented soybean foods.
    Chang TS; Ding HY; Tai SS; Wu CY
    Biosci Biotechnol Biochem; 2007 May; 71(5):1330-3. PubMed ID: 17485838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted metabolomics for Aspergillus oryzae-mediated biotransformation of soybean isoflavones, showing variations in primary metabolites.
    Lee S; Seo MH; Oh DK; Lee CH
    Biosci Biotechnol Biochem; 2014; 78(1):167-74. PubMed ID: 25036500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of a new metabolite from biotransformation of daidzein by Aspergillus oryzae.
    Chen YC; Sugiyama Y; Hirota A
    Biosci Biotechnol Biochem; 2009 Aug; 73(8):1877-9. PubMed ID: 19661709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimisation of soy flour fermentation parameters to produce β-glucosidase for bioconversion into aglycones.
    Handa CL; Couto UR; Vicensoti AH; Georgetti SR; Ida EI
    Food Chem; 2014; 152():56-65. PubMed ID: 24444906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agmatine Production by Aspergillus oryzae Is Elevated by Low pH during Solid-State Cultivation.
    Akasaka N; Kato S; Kato S; Hidese R; Wagu Y; Sakoda H; Fujiwara S
    Appl Environ Microbiol; 2018 Aug; 84(15):. PubMed ID: 29802188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous enhancement of free isoflavone content and antioxidant potential of soybean by fermentation with Aspergillus oryzae.
    Hwan Nam D; Jung Kim H; Sun Lim J; Heon Kim K; Park CS; Hwan Kim J; Lim J; Young Kwon D; Kim IH; Kim JS
    J Food Sci; 2011 Oct; 76(8):H194-200. PubMed ID: 22417591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acceleration of Aglycone Isoflavone and γ-Aminobutyric Acid Production from Doenjang Using Whole-Cell Biocatalysis Accompanied by Protease Treatment.
    Li Y; Ku S; Park MS; Li Z; Ji GE
    J Microbiol Biotechnol; 2017 Nov; 27(11):1952-1960. PubMed ID: 28910863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation, bioactivity, and production of ortho-hydroxydaidzein and ortho-hydroxygenistein.
    Chang TS
    Int J Mol Sci; 2014 Apr; 15(4):5699-716. PubMed ID: 24705463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-level expression and efficient purification of bioactive swollenin in Aspergillus oryzae.
    Wang M; Cai J; Huang L; Lv Z; Zhang Y; Xu Z
    Appl Biochem Biotechnol; 2010 Nov; 162(7):2027-36. PubMed ID: 20446057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbiological transformation of L-tyrosine to 3,4-dihydroxyphenyl L-alanine (L-dopa) by a mutant strain of Aspergillus oryzae UV-7.
    Ikram-Ul-Haq ; Ali S
    Curr Microbiol; 2002 Aug; 45(2):88-93. PubMed ID: 12070684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 8-Hydroxydaidzein, an aldose reductase inhibitor from okara fermented with Aspergillus sp. HK-388.
    Fujita T; Funako T; Hayashi H
    Biosci Biotechnol Biochem; 2004 Jul; 68(7):1588-90. PubMed ID: 15277768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. L-lactic acid production from starch by simultaneous saccharification and fermentation in a genetically engineered Aspergillus oryzae pure culture.
    Wakai S; Yoshie T; Asai-Nakashima N; Yamada R; Ogino C; Tsutsumi H; Hata Y; Kondo A
    Bioresour Technol; 2014 Dec; 173():376-383. PubMed ID: 25314668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isoflavone transformation during soybean koji preparation and subsequent miso fermentation supplemented with ethanol and NaCl.
    Chiou RY; Cheng SL
    J Agric Food Chem; 2001 Aug; 49(8):3656-60. PubMed ID: 11513643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of kojic acid production in Aspergillus oryzae B008 mutant strain and its uses in fermentation of concentrated corn stalk hydrolysate.
    Yan S; Tang H; Wang S; Xu L; Liu H; Guo Y; Yao J
    Bioprocess Biosyst Eng; 2014 Jun; 37(6):1095-103. PubMed ID: 24170020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Aspergillus oryzae-challenged germination on soybean isoflavone content and antioxidant activity.
    Jeon HY; Seo DB; Shin HJ; Lee SJ
    J Agric Food Chem; 2012 Mar; 60(11):2807-14. PubMed ID: 22409158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-state fermentation of soybean and corn processing coproducts for potential feed improvement.
    Lio J; Wang T
    J Agric Food Chem; 2012 Aug; 60(31):7702-9. PubMed ID: 22799754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High production of succinyl isoflavone glycosides by Bacillus licheniformis ZSP01 resting cells in aqueous miscible organic medium.
    Zhang S; Chen G; Chu J; Wu B; He B
    Biotechnol Appl Biochem; 2015; 62(2):255-9. PubMed ID: 24919721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New potent antioxidative o-dihydroxyisoflavones in fermented Japanese soybean products.
    Esaki H; Kawakishi S; Morimitsu Y; Osawa T
    Biosci Biotechnol Biochem; 1999 Sep; 63(9):1637-9. PubMed ID: 10540753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.