BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 23748779)

  • 1. Zinc depletion activates the endoplasmic reticulum-stress sensor Ire1 via pleiotropic mechanisms.
    Nguyen TS; Kohno K; Kimata Y
    Biosci Biotechnol Biochem; 2013; 77(6):1337-9. PubMed ID: 23748779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol stress impairs protein folding in the endoplasmic reticulum and activates Ire1 in Saccharomyces cerevisiae.
    Miyagawa K; Ishiwata-Kimata Y; Kohno K; Kimata Y
    Biosci Biotechnol Biochem; 2014; 78(8):1389-91. PubMed ID: 25130742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BiP-bound and nonclustered mode of Ire1 evokes a weak but sustained unfolded protein response.
    Ishiwata-Kimata Y; Promlek T; Kohno K; Kimata Y
    Genes Cells; 2013 Apr; 18(4):288-301. PubMed ID: 23387983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Categorization of endoplasmic reticulum stress as accumulation of unfolded proteins or membrane lipid aberrancy using yeast Ire1 mutants.
    Tran DM; Takagi H; Kimata Y
    Biosci Biotechnol Biochem; 2019 Feb; 83(2):326-329. PubMed ID: 30319071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of the Unfolded Protein Response by Lipid Bilayer Stress.
    Halbleib K; Pesek K; Covino R; Hofbauer HF; Wunnicke D; Hänelt I; Hummer G; Ernst R
    Mol Cell; 2017 Aug; 67(4):673-684.e8. PubMed ID: 28689662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-association and BiP dissociation are not sufficient for activation of the ER stress sensor Ire1.
    Oikawa D; Kimata Y; Kohno K
    J Cell Sci; 2007 May; 120(Pt 9):1681-8. PubMed ID: 17452628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Ire1 Twist that Links Proteostatic with Lipostatic Control of the Endoplasmic Reticulum.
    Aragón T; van Anken E
    Trends Cell Biol; 2017 Oct; 27(10):699-700. PubMed ID: 28886896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How IRE1 reacts to ER stress.
    Ron D; Hubbard SR
    Cell; 2008 Jan; 132(1):24-6. PubMed ID: 18191217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An essential dimer-forming subregion of the endoplasmic reticulum stress sensor Ire1.
    Oikawa D; Kimata Y; Takeuchi M; Kohno K
    Biochem J; 2005 Oct; 391(Pt 1):135-42. PubMed ID: 15954865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron affects Ire1 clustering propensity and the amplitude of endoplasmic reticulum stress signaling.
    Cohen N; Breker M; Bakunts A; Pesek K; Chas A; Argemí J; Orsi A; Gal L; Chuartzman S; Wigelman Y; Jonas F; Walter P; Ernst R; Aragón T; van Anken E; Schuldiner M
    J Cell Sci; 2017 Oct; 130(19):3222-3233. PubMed ID: 28794014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental approaches for elucidation of stress-sensing mechanisms of the IRE1 family proteins.
    Oikawa D; Kimata Y
    Methods Enzymol; 2011; 490():195-216. PubMed ID: 21266252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways.
    Promlek T; Ishiwata-Kimata Y; Shido M; Sakuramoto M; Kohno K; Kimata Y
    Mol Biol Cell; 2011 Sep; 22(18):3520-32. PubMed ID: 21775630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-association status-dependent inactivation of the endoplasmic reticulum stress sensor Ire1 by C-terminal tagging with artificial peptides.
    Ishiwata-Kimata Y; Hata T; Kimata Y
    Biosci Biotechnol Biochem; 2022 May; 86(6):739-746. PubMed ID: 35285870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress sensor Ire1 deploys a divergent transcriptional program in response to lipid bilayer stress.
    Ho N; Yap WS; Xu J; Wu H; Koh JH; Goh WWB; George B; Chong SC; Taubert S; Thibault G
    J Cell Biol; 2020 Jul; 219(7):. PubMed ID: 32349127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ADP-binding kinase region of Ire1 directly contributes to its responsiveness to endoplasmic reticulum stress.
    Le QG; Ishiwata-Kimata Y; Phuong TH; Fukunaka S; Kohno K; Kimata Y
    Sci Rep; 2021 Feb; 11(1):4506. PubMed ID: 33627709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specificity in endoplasmic reticulum-stress signaling in yeast entails a step-wise engagement of HAC1 mRNA to clusters of the stress sensor Ire1.
    van Anken E; Pincus D; Coyle S; Aragón T; Osman C; Lari F; Gómez Puerta S; Korennykh AV; Walter P
    Elife; 2014 Dec; 3():e05031. PubMed ID: 25549299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring signaling by the unfolded protein response.
    Cox DJ; Strudwick N; Ali AA; Paton AW; Paton JC; Schröder M
    Methods Enzymol; 2011; 491():261-92. PubMed ID: 21329805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The endoribonuclease activity of mammalian IRE1 autoregulates its mRNA and is required for the unfolded protein response.
    Tirasophon W; Lee K; Callaghan B; Welihinda A; Kaufman RJ
    Genes Dev; 2000 Nov; 14(21):2725-36. PubMed ID: 11069889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conditions of endoplasmic reticulum stress stimulate lipid droplet formation in Saccharomyces cerevisiae.
    Fei W; Wang H; Fu X; Bielby C; Yang H
    Biochem J; 2009 Oct; 424(1):61-7. PubMed ID: 19708857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homeostatic adaptation to endoplasmic reticulum stress depends on Ire1 kinase activity.
    Rubio C; Pincus D; Korennykh A; Schuck S; El-Samad H; Walter P
    J Cell Biol; 2011 Apr; 193(1):171-84. PubMed ID: 21444684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.