These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 23748892)
1. Transplanting p75-suppressed bone marrow stromal cells promotes functional behavior in a rat model of spinal cord injury. Edalat H; Hajebrahimi Z; Pirhajati V; Movahedin M; Tavallaei M; Soroush MR; Mowla SJ Iran Biomed J; 2013; 17(3):140-5. PubMed ID: 23748892 [TBL] [Abstract][Full Text] [Related]
2. Effects of combination treatment with transcranial magnetic stimulation and bone marrow mesenchymal stem cell transplantation or Raf inhibition on spinal cord injury in rats. Feng S; Wang S; Sun S; Su H; Zhang L Mol Med Rep; 2021 Apr; 23(4):. PubMed ID: 33649786 [TBL] [Abstract][Full Text] [Related]
3. Effects of Edaravone on Functional Recovery of a Rat Model with Spinal Cord Injury Through Induced Differentiation of Bone Marrow Mesenchymal Stem Cells into Neuron-Like Cells. Li Y; Liu L; Yu Z; Yu Y; Sun B; Xiao C; Luo S; Li L Cell Reprogram; 2021 Feb; 23(1):47-56. PubMed ID: 33400610 [TBL] [Abstract][Full Text] [Related]
4. Effect of SDF-1/CXCR4 axis on the migration of transplanted bone mesenchymal stem cells mobilized by erythropoietin toward lesion sites following spinal cord injury. Li J; Guo W; Xiong M; Han H; Chen J; Mao D; Tang B; Yu H; Zeng Y Int J Mol Med; 2015 Nov; 36(5):1205-14. PubMed ID: 26398409 [TBL] [Abstract][Full Text] [Related]
5. Transplantation of neurotrophin-3-expressing bone mesenchymal stem cells improves recovery in a rat model of spinal cord injury. Wang LJ; Zhang RP; Li JD Acta Neurochir (Wien); 2014 Jul; 156(7):1409-18. PubMed ID: 24744011 [TBL] [Abstract][Full Text] [Related]
6. Vascular Endothelial Growth Factor-Transfected Bone Marrow Mesenchymal Stem Cells Improve the Recovery of Motor and Sensory Functions of Rats With Spinal Cord Injury. Liu X; Xu W; Zhang Z; Liu H; Lv L; Han D; Liu L; Yao A; Xu T Spine (Phila Pa 1976); 2020 Apr; 45(7):E364-E372. PubMed ID: 32168135 [TBL] [Abstract][Full Text] [Related]
7. Tanshinone IIA promotes the differentiation of bone marrow mesenchymal stem cells into neuronal-like cells in a spinal cord injury model. Zhang XM; Ma J; Sun Y; Yu BQ; Jiao ZM; Wang D; Yu MY; Li JY; Fu J J Transl Med; 2018 Jul; 16(1):193. PubMed ID: 30001730 [TBL] [Abstract][Full Text] [Related]
8. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats. Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959 [TBL] [Abstract][Full Text] [Related]
9. Intranasal delivery of bone marrow stromal cells to spinal cord lesions. Ninomiya K; Iwatsuki K; Ohnishi Y; Ohkawa T; Yoshimine T J Neurosurg Spine; 2015 Jul; 23(1):111-9. PubMed ID: 25840039 [TBL] [Abstract][Full Text] [Related]
10. Treatment of rat spinal cord injury with a Rho-kinase inhibitor and bone marrow stromal cell transplantation. Furuya T; Hashimoto M; Koda M; Okawa A; Murata A; Takahashi K; Yamashita T; Yamazaki M Brain Res; 2009 Oct; 1295():192-202. PubMed ID: 19651108 [TBL] [Abstract][Full Text] [Related]
11. A comparative study of therapeutic benefits of intraspinal and intravenous bone marrow stromal cell administration to spinal cord injuries. Khalatbary AR; Tiraihi T Iran Biomed J; 2009 Jan; 13(1):43-8. PubMed ID: 19252677 [TBL] [Abstract][Full Text] [Related]
12. Human Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Attenuate Blood-Spinal Cord Barrier Disruption via the TIMP2/MMP Pathway After Acute Spinal Cord Injury. Xin W; Qiang S; Jianing D; Jiaming L; Fangqi L; Bin C; Yuanyuan C; Guowang Z; Jianguang X; Xiaofeng L Mol Neurobiol; 2021 Dec; 58(12):6490-6504. PubMed ID: 34554399 [TBL] [Abstract][Full Text] [Related]
13. In vivo fluorescence tracking of bone marrow stromal cells transplanted into a pneumatic injury model of rat spinal cord. Yano S; Kuroda S; Lee JB; Shichinohe H; Seki T; Ikeda J; Nishimura G; Hida K; Tamura M; Iwasaki Y J Neurotrauma; 2005 Aug; 22(8):907-18. PubMed ID: 16083357 [TBL] [Abstract][Full Text] [Related]
14. Combination of activated Schwann cells with bone mesenchymal stem cells: the best cell strategy for repair after spinal cord injury in rats. Ban DX; Ning GZ; Feng SQ; Wang Y; Zhou XH; Liu Y; Chen JT Regen Med; 2011 Nov; 6(6):707-20. PubMed ID: 22050523 [TBL] [Abstract][Full Text] [Related]
15. Treatment of rats with spinal cord injury using human bone marrow-derived stromal cells prepared by negative selection. Romero-Ramírez L; Wu S; de Munter J; Wolters EC; Kramer BW; Mey J J Biomed Sci; 2020 Feb; 27(1):35. PubMed ID: 32066435 [TBL] [Abstract][Full Text] [Related]
16. Glial Cell Line-Derived Neurotrophic Factor-Transfected Placenta-Derived Versus Bone Marrow-Derived Mesenchymal Cells for Treating Spinal Cord Injury. Lu Y; Gao H; Zhang M; Chen B; Yang H Med Sci Monit; 2017 Apr; 23():1800-1811. PubMed ID: 28408732 [TBL] [Abstract][Full Text] [Related]
18. Effect of TNF-α Inhibition on Bone Marrow-Derived Mesenchymal Stem Cells in Neurological Function Recovery after Spinal Cord Injury via the Wnt Signaling Pathway in a Rat Model. Peng RJ; Jiang B; Ding XP; Huang H; Liao YW; Peng G; Cheng Q; Xi J Cell Physiol Biochem; 2017; 42(2):743-752. PubMed ID: 28624824 [TBL] [Abstract][Full Text] [Related]
19. Recovery of function following grafting of human bone marrow-derived stromal cells into the injured spinal cord. Himes BT; Neuhuber B; Coleman C; Kushner R; Swanger SA; Kopen GC; Wagner J; Shumsky JS; Fischer I Neurorehabil Neural Repair; 2006 Jun; 20(2):278-96. PubMed ID: 16679505 [TBL] [Abstract][Full Text] [Related]
20. The treatment of spinal cord injury in rats using bone marrow-derived neural-like cells induced by cerebrospinal fluid. Ye Y; Feng TT; Peng YR; Hu SQ; Xu T Neurosci Lett; 2018 Feb; 666():85-91. PubMed ID: 29274438 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]