These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23748904)

  • 1. Elevated blood pressure, heart rate and body temperature in mice lacking the XLαs protein of the Gnas locus is due to increased sympathetic tone.
    Nunn N; Feetham CH; Martin J; Barrett-Jolley R; Plagge A
    Exp Physiol; 2013 Oct; 98(10):1432-45. PubMed ID: 23748904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postnatal changes in the expression pattern of the imprinted signalling protein XLαs underlie the changing phenotype of deficient mice.
    Krechowec SO; Burton KL; Newlaczyl AU; Nunn N; Vlatković N; Plagge A
    PLoS One; 2012; 7(1):e29753. PubMed ID: 22253771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The alternative stimulatory G protein alpha-subunit XLalphas is a critical regulator of energy and glucose metabolism and sympathetic nerve activity in adult mice.
    Xie T; Plagge A; Gavrilova O; Pack S; Jou W; Lai EW; Frontera M; Kelsey G; Weinstein LS
    J Biol Chem; 2006 Jul; 281(28):18989-99. PubMed ID: 16672216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxyntomodulin increases intrinsic heart rate in mice independent of the glucagon-like peptide-1 receptor.
    Sowden GL; Drucker DJ; Weinshenker D; Swoap SJ
    Am J Physiol Regul Integr Comp Physiol; 2007 Feb; 292(2):R962-70. PubMed ID: 17038440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reductions in hypothalamic Gfap expression, glial cells and α-tanycytes in lean and hypermetabolic Gnasxl-deficient mice.
    Holmes AP; Wong SQ; Pulix M; Johnson K; Horton NS; Thomas P; de Magalhães JP; Plagge A
    Mol Brain; 2016 Apr; 9():39. PubMed ID: 27080240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autonomic nervous system and blood pressure regulation in RGS2-deficient mice.
    Gross V; Tank J; Obst M; Plehm R; Blumer KJ; Diedrich A; Jordan J; Luft FC
    Am J Physiol Regul Integr Comp Physiol; 2005 May; 288(5):R1134-42. PubMed ID: 15661972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depressed heart rate variability and arterial baroreflex in conscious transgenic mice with overexpression of cardiac Gsalpha.
    Uechi M; Asai K; Osaka M; Smith A; Sato N; Wagner TE; Ishikawa Y; Hayakawa H; Vatner DE; Shannon RP; Homcy CJ; Vatner SF
    Circ Res; 1998 Mar; 82(4):416-23. PubMed ID: 9506701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power spectral analysis of heart rate variability for assessment of diurnal variation of autonomic nervous activity in guinea pigs.
    Akita M; Ishii K; Kuwahara M; Tsubone H
    Exp Anim; 2002 Jan; 51(1):1-7. PubMed ID: 11871145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Power spectral analysis of heart rate variability as a new method for assessing autonomic activity in the rat.
    Kuwahara M; Yayou K; Ishii K; Hashimoto S; Tsubone H; Sugano S
    J Electrocardiol; 1994 Oct; 27(4):333-7. PubMed ID: 7815012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased insulin sensitivity in paternal Gnas knockout mice is associated with increased lipid clearance.
    Chen M; Haluzik M; Wolf NJ; Lorenzo J; Dietz KR; Reitman ML; Weinstein LS
    Endocrinology; 2004 Sep; 145(9):4094-102. PubMed ID: 15166122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure.
    Baggio LL; Huang Q; Brown TJ; Drucker DJ
    Gastroenterology; 2004 Aug; 127(2):546-58. PubMed ID: 15300587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autonomic nervous function in mice and voles (Microtus arvalis): investigation by power spectral analysis of heart rate variability.
    Ishii K; Kuwahara M; Tsubone H; Sugano S
    Lab Anim; 1996 Oct; 30(4):359-64. PubMed ID: 8938623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GLP-1 receptor stimulation depresses heart rate variability and inhibits neurotransmission to cardiac vagal neurons.
    Griffioen KJ; Wan R; Okun E; Wang X; Lovett-Barr MR; Li Y; Mughal MR; Mendelowitz D; Mattson MP
    Cardiovasc Res; 2011 Jan; 89(1):72-8. PubMed ID: 20736238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons.
    Yamamoto H; Lee CE; Marcus JN; Williams TD; Overton JM; Lopez ME; Hollenberg AN; Baggio L; Saper CB; Drucker DJ; Elmquist JK
    J Clin Invest; 2002 Jul; 110(1):43-52. PubMed ID: 12093887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying cardiac sympathetic and parasympathetic nervous activities using principal dynamic modes analysis of heart rate variability.
    Zhong Y; Jan KM; Ju KH; Chon KH
    Am J Physiol Heart Circ Physiol; 2006 Sep; 291(3):H1475-83. PubMed ID: 16603701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does low frequency power of arterial blood pressure reflect sympathetic tone?
    Stauss HM; Mrowka R; Nafz B; Patzak A; Unger T; Persson PB
    J Auton Nerv Syst; 1995 Aug; 54(2):145-54. PubMed ID: 7499726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autonomic control of heart rate and its variability during normoxia and hypoxia in emu (Dromaius novaehollandiae) hatchlings.
    Shah R; Greyner H; Dzialowski EM
    Poult Sci; 2010 Jan; 89(1):135-44. PubMed ID: 20008811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exenatide acutely increases heart rate in parallel with augmented sympathetic nervous system activation in healthy overweight males.
    Smits MM; Muskiet MH; Tonneijck L; Hoekstra T; Kramer MH; Diamant M; van Raalte DH
    Br J Clin Pharmacol; 2016 Apr; 81(4):613-20. PubMed ID: 26609792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mice lacking melanin-concentrating hormone receptor 1 demonstrate increased heart rate associated with altered autonomic activity.
    Astrand A; Bohlooly-Y M; Larsdotter S; Mahlapuu M; Andersén H; Tornell J; Ohlsson C; Snaith M; Morgan DG
    Am J Physiol Regul Integr Comp Physiol; 2004 Oct; 287(4):R749-58. PubMed ID: 15130877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative Gnas gene products have opposite effects on glucose and lipid metabolism.
    Chen M; Gavrilova O; Liu J; Xie T; Deng C; Nguyen AT; Nackers LM; Lorenzo J; Shen L; Weinstein LS
    Proc Natl Acad Sci U S A; 2005 May; 102(20):7386-91. PubMed ID: 15883378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.