These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 23749029)

  • 1. Mitochondria as oxidative signaling organelles in T-cell activation: physiological role and pathological implications.
    Kamiński MM; Röth D; Krammer PH; Gülow K
    Arch Immunol Ther Exp (Warsz); 2013 Oct; 61(5):367-84. PubMed ID: 23749029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Role of mitochondria in reactive oxygen species generation and removal; relevance to signaling and programmed cell death].
    Czarna M; Jarmuszkiewicz W
    Postepy Biochem; 2006; 52(2):145-56. PubMed ID: 17078504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics.
    Mailloux RJ; McBride SL; Harper ME
    Trends Biochem Sci; 2013 Dec; 38(12):592-602. PubMed ID: 24120033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T cell receptor stimulation, reactive oxygen species, and cell signaling.
    Williams MS; Kwon J
    Free Radic Biol Med; 2004 Oct; 37(8):1144-51. PubMed ID: 15451054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manganese superoxide dismutase: a regulator of T cell activation-induced oxidative signaling and cell death.
    Kamiński MM; Röth D; Sass S; Sauer SW; Krammer PH; Gülow K
    Biochim Biophys Acta; 2012 May; 1823(5):1041-52. PubMed ID: 22429591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial reactive oxygen species production and elimination.
    Nickel A; Kohlhaas M; Maack C
    J Mol Cell Cardiol; 2014 Aug; 73():26-33. PubMed ID: 24657720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel role for mitochondria: protein kinase Ctheta-dependent oxidative signaling organelles in activation-induced T-cell death.
    Kaminski M; Kiessling M; Süss D; Krammer PH; Gülow K
    Mol Cell Biol; 2007 May; 27(10):3625-39. PubMed ID: 17339328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial generation of free radicals and hypoxic signaling.
    Poyton RO; Ball KA; Castello PR
    Trends Endocrinol Metab; 2009 Sep; 20(7):332-40. PubMed ID: 19733481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation.
    Dröse S; Brandt U; Wittig I
    Biochim Biophys Acta; 2014 Aug; 1844(8):1344-54. PubMed ID: 24561273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial ROS generation and its regulation: mechanisms involved in H(2)O(2) signaling.
    Rigoulet M; Yoboue ED; Devin A
    Antioxid Redox Signal; 2011 Feb; 14(3):459-68. PubMed ID: 20649461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic switches of T-cell activation and apoptosis.
    Perl A; Gergely P; Puskas F; Banki K
    Antioxid Redox Signal; 2002 Jun; 4(3):427-43. PubMed ID: 12215210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial compartmentalization of redox processes.
    Cardoso AR; Chausse B; da Cunha FM; Luévano-Martínez LA; Marazzi TB; Pessoa PS; Queliconi BB; Kowaltowski AJ
    Free Radic Biol Med; 2012 Jun 1-15; 52(11-12):2201-8. PubMed ID: 22564526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox regulation of T-cell receptor signaling.
    Simeoni L; Bogeski I
    Biol Chem; 2015 May; 396(5):555-68. PubMed ID: 25781677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive oxygen species in melanoma and its therapeutic implications.
    Wittgen HG; van Kempen LC
    Melanoma Res; 2007 Dec; 17(6):400-9. PubMed ID: 17992124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting tissue oxidative damage by means of cell signaling modulators: the antioxidant concept revisited.
    Leonarduzzi G; Sottero B; Poli G
    Pharmacol Ther; 2010 Nov; 128(2):336-74. PubMed ID: 20732353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional plasma membrane redox systems.
    Medina MA; del Castillo-Olivares A; Núñez de Castro I
    Bioessays; 1997 Nov; 19(11):977-84. PubMed ID: 9394620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial metabolism of reactive oxygen species.
    Venditti P; Di Stefano L; Di Meo S
    Mitochondrion; 2013 Mar; 13(2):71-82. PubMed ID: 23376030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease.
    Babizhayev MA
    Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estrogen-induced mitochondrial reactive oxygen species as signal-transducing messengers.
    Felty Q; Xiong WC; Sun D; Sarkar S; Singh KP; Parkash J; Roy D
    Biochemistry; 2005 May; 44(18):6900-9. PubMed ID: 15865435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.