These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 23749117)

  • 1. Evolutionary survey of druggable protein targets with respect to their subcellular localizations.
    Wang X; Wang R; Zhang Y; Zhang H
    Genome Biol Evol; 2013; 5(7):1291-7. PubMed ID: 23749117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targetability of human disease genes.
    Sakharkar MK; Sakharkar KR
    Curr Drug Discov Technol; 2007 Jun; 4(1):48-58. PubMed ID: 17630928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic Prioritization of Druggable Mutations in ∼5000 Genomes Across 16 Cancer Types Using a Structural Genomics-based Approach.
    Zhao J; Cheng F; Wang Y; Arteaga CL; Zhao Z
    Mol Cell Proteomics; 2016 Feb; 15(2):642-56. PubMed ID: 26657081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A machine learning approach for genome-wide prediction of morbid and druggable human genes based on systems-level data.
    Costa PR; Acencio ML; Lemke N
    BMC Genomics; 2010 Dec; 11 Suppl 5(Suppl 5):S9. PubMed ID: 21210975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Pharmaphylogeny vs. pharmacophylogenomics: molecular phylogeny, evolution and drug discovery].
    Hao DC; Xiao PG; Liu M; Peng Y; He CN
    Yao Xue Xue Bao; 2014 Oct; 49(10):1387-94. PubMed ID: 25577867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug target ontology to classify and integrate drug discovery data.
    Lin Y; Mehta S; Küçük-McGinty H; Turner JP; Vidovic D; Forlin M; Koleti A; Nguyen DT; Jensen LJ; Guha R; Mathias SL; Ursu O; Stathias V; Duan J; Nabizadeh N; Chung C; Mader C; Visser U; Yang JJ; Bologa CG; Oprea TI; Schürer SC
    J Biomed Semantics; 2017 Nov; 8(1):50. PubMed ID: 29122012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The drug target genes show higher evolutionary conservation than non-target genes.
    Lv W; Xu Y; Guo Y; Yu Z; Feng G; Liu P; Luan M; Zhu H; Liu G; Zhang M; Lv H; Duan L; Shang Z; Li J; Jiang Y; Zhang R
    Oncotarget; 2016 Jan; 7(4):4961-71. PubMed ID: 26716901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence-Derived Markers of Drug Targets and Potentially Druggable Human Proteins.
    Ghadermarzi S; Li X; Li M; Kurgan L
    Front Genet; 2019; 10():1075. PubMed ID: 31803227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonsynonymous substitution rate (Ka) is a relatively consistent parameter for defining fast-evolving and slow-evolving protein-coding genes.
    Wang D; Liu F; Wang L; Huang S; Yu J
    Biol Direct; 2011 Feb; 6():13. PubMed ID: 21342519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meta-basic estimates the size of druggable human genome.
    Plewczynski D; Rychlewski L
    J Mol Model; 2009 Jun; 15(6):695-9. PubMed ID: 18663489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can medical genetics and evolutionary biology inspire drug target identification?
    Wang ZY; Fu LY; Zhang HY
    Trends Mol Med; 2012 Feb; 18(2):69-71. PubMed ID: 22172275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mammalian organelle map by protein correlation profiling.
    Foster LJ; de Hoog CL; Zhang Y; Zhang Y; Xie X; Mootha VK; Mann M
    Cell; 2006 Apr; 125(1):187-99. PubMed ID: 16615899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Summary-data-based Mendelian randomization prioritizes potential druggable targets for multiple sclerosis.
    Jacobs BM; Taylor T; Awad A; Baker D; Giovanonni G; Noyce AJ; Dobson R
    Brain Commun; 2020; 2(2):fcaa119. PubMed ID: 33005893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The druggable genome: Evaluation of drug targets in clinical trials suggests major shifts in molecular class and indication.
    Rask-Andersen M; Masuram S; Schiöth HB
    Annu Rev Pharmacol Toxicol; 2014; 54():9-26. PubMed ID: 24016212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the odds of drug development success through human genomics: modelling study.
    Hingorani AD; Kuan V; Finan C; Kruger FA; Gaulton A; Chopade S; Sofat R; MacAllister RJ; Overington JP; Hemingway H; Denaxas S; Prieto D; Casas JP
    Sci Rep; 2019 Dec; 9(1):18911. PubMed ID: 31827124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein sequence conservation and stable molecular evolution reveals influenza virus nucleoprotein as a universal druggable target.
    Babar MM; Zaidi NU
    Infect Genet Evol; 2015 Aug; 34():200-10. PubMed ID: 26140959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Target identification in Fusobacterium nucleatum by subtractive genomics approach and enrichment analysis of host-pathogen protein-protein interactions.
    Kumar A; Thotakura PL; Tiwary BK; Krishna R
    BMC Microbiol; 2016 May; 16():84. PubMed ID: 27176600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The promise of genomics to identify novel therapeutic targets.
    Orth AP; Batalov S; Perrone M; Chanda SK
    Expert Opin Ther Targets; 2004 Dec; 8(6):587-96. PubMed ID: 15584864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated structural proteomics approach along the druggable genome of Corynebacterium pseudotuberculosis species for putative druggable targets.
    Radusky LG; Hassan S; Lanzarotti E; Tiwari S; Jamal S; Ali J; Ali A; Ferreira R; Barh D; Silva A; Turjanski AG; Azevedo VA
    BMC Genomics; 2015; 16 Suppl 5(Suppl 5):S9. PubMed ID: 26041381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Druggable cancer secretome: neoplasm-associated traits.
    Narayanan R
    Cancer Genomics Proteomics; 2015; 12(3):119-31. PubMed ID: 25977171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.