These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 23749149)

  • 21. Coherent phenomena of charge separation in reaction centers of LL131H and LL131H/LM160H/FM197H mutants of Rhodobacter sphaeroides.
    Yakovlev AG; Vasilieva LG; Shkuropatov AY; Shuvalov VA
    Biochemistry (Mosc); 2011 Oct; 76(10):1107-19. PubMed ID: 22098236
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Higher metal-ligand coordination in the catalytic site of cobalt-substituted Thermoanaerobacter brockii alcohol dehydrogenase lowers the barrier for enzyme catalysis.
    Kleifeld O; Rulísek L; Bogin O; Frenkel A; Havlas Z; Burstein Y; Sagi I
    Biochemistry; 2004 Jun; 43(22):7151-61. PubMed ID: 15170352
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient hydrogen production from acetate through isolated Rhodobacter sphaeroides.
    Kobayashi J; Yoshimune K; Komoriya T; Kohno H
    J Biosci Bioeng; 2011 Dec; 112(6):602-5. PubMed ID: 21903465
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectroscopic characterization of cobalt-containing mesoporous materials.
    Vrålstad T; Glomm WR; Rønning M; Dathe H; Jentys A; Lercher JA; Oye G; Stöcker M; Sjöblom J
    J Phys Chem B; 2006 Mar; 110(11):5386-94. PubMed ID: 16539473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The assembly and organisation of photosynthetic membranes in Rhodobacter sphaeroides.
    Hunter CN; Tucker JD; Niederman RA
    Photochem Photobiol Sci; 2005 Dec; 4(12):1023-7. PubMed ID: 16307117
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Femtosecond charge separation in dry films of reaction centers of Rhodobacter sphaeroides and Chloroflexus aurantiacus.
    Yakovlev AG; Khmelnitsky AY; Shuvalov VA
    Biochemistry (Mosc); 2012 May; 77(5):444-55. PubMed ID: 22813585
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ubiquinone reduction in the photosynthetic reaction centre of Rhodobacter sphaeroides: interplay between electron transfer, proton binding and flips of the quinone ring.
    Mulkidjanian AY; Kozlova MA; Cherepanov DA
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):845-50. PubMed ID: 16042612
    [TBL] [Abstract][Full Text] [Related]  

  • 28. X-ray absorption near edge structure and extended X-ray absorption fine structure analysis of Fe(II) aqueous and acetone solutions.
    Olszewski W; Szymański K; Zaleski P; Zając DA
    J Phys Chem A; 2011 Nov; 115(46):13420-4. PubMed ID: 21995586
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Picosecond fluorometry of Rhodopseudomonas sphaeroides strain 1760-1 bacteria].
    Pashchenko VZ; Kononenko AA; Rubin AB; Rubin LB
    Biofizika; 1978; 23(5):833-8. PubMed ID: 212114
    [No Abstract]   [Full Text] [Related]  

  • 30. A new type of metal-binding site in cobalt- and zinc-containing adenylate kinases isolated from sulfate-reducers Desulfovibrio gigas and Desulfovibrio desulfuricans ATCC 27774.
    Gavel OY; Bursakov SA; Di Rocco G; Trincão J; Pickering IJ; George GN; Calvete JJ; Shnyrov VL; Brondino CD; Pereira AS; Lampreia J; Tavares P; Moura JJ; Moura I
    J Inorg Biochem; 2008; 102(5-6):1380-95. PubMed ID: 18328566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Employing Rhodobacter sphaeroides to functionally express and purify human G protein-coupled receptors.
    Roy A; Shukla AK; Haase W; Michel H
    Biol Chem; 2008 Jan; 389(1):69-78. PubMed ID: 18095871
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy.
    Kanan MW; Yano J; Surendranath Y; Dincă M; Yachandra VK; Nocera DG
    J Am Chem Soc; 2010 Oct; 132(39):13692-701. PubMed ID: 20839862
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extracellular metal-free corrinoids from Rhodopseudomonas spheroides.
    Dresow B; Schlingmann G; Ernst L; Koppenhagen VB
    J Biol Chem; 1980 Aug; 255(16):7637-44. PubMed ID: 6967486
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Testing the photosynthetic bacterium Rhodobacter sphaeroides as heavy metal removal tool.
    Buccolieri A; Italiano F; Dell'Atti A; Buccolieri G; Giotta L; Agostiano A; Milano F; Trotta M
    Ann Chim; 2006; 96(3-4):195-203. PubMed ID: 16836253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Size- and support-dependent evolution of the oxidation state and structure by oxidation of subnanometer cobalt clusters.
    Yin C; Zheng F; Lee S; Guo J; Wang WC; Kwon G; Vajda V; Wang HH; Lee B; DeBartolo J; Seifert S; Winans RE; Vajda S
    J Phys Chem A; 2014 Sep; 118(37):8477-84. PubMed ID: 24922443
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation of cobalt-free corrinoids in Rhodopseudomonas spheroides.
    Kamikubo T; Sasaki K; Hayashi M
    J Nutr Sci Vitaminol (Tokyo); 1977; 23(3):179-85. PubMed ID: 335029
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trace cobalt speciation in bacteria and at enzymic active sites using emission Mössbauer spectroscopy.
    Kamnev AA; Antonyuk LP; Smirnova VE; Serebrennikova OB; Kulikov LA; Perfiliev YD
    Anal Bioanal Chem; 2002 Feb; 372(3):431-5. PubMed ID: 11939529
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced CO
    Fitriana HN; Lee S; Kim HS; Lee J; Lee Y; Lee JS; Park H; Ko CH; Lim SY; Lee SY
    Bioelectrochemistry; 2022 Jun; 145():108102. PubMed ID: 35338862
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolutionary engineering and molecular characterization of cobalt-resistant
    Atay G; Holyavkin C; Can H; Arslan M; Topaloğlu A; Trotta M; Çakar ZP
    Front Microbiol; 2024; 15():1412294. PubMed ID: 38993486
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The potential of
    Lee S; Kim Y-H; Min J
    Microbiol Spectr; 2024 Mar; 12(3):e0245623. PubMed ID: 38319116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.