BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 23749233)

  • 1. Facile fabrication of hierarchically porous CuFe2O4 nanospheres with enhanced capacitance property.
    Zhu M; Meng D; Wang C; Diao G
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6030-7. PubMed ID: 23749233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-step facile solvothermal synthesis of copper ferrite-graphene composite as a high-performance supercapacitor material.
    Zhang W; Quan B; Lee C; Park SK; Li X; Choi E; Diao G; Piao Y
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2404-14. PubMed ID: 25584805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of porous β-Co(OH)2 architecture at room temperature: a high performance supercapacitor.
    Mondal C; Ganguly M; Manna PK; Yusuf SM; Pal T
    Langmuir; 2013 Jul; 29(29):9179-87. PubMed ID: 23806182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A facile route to growth of γ-MnOOH nanorods and electrochemical capacitance properties.
    Li Z; Bao H; Miao X; Chen X
    J Colloid Interface Sci; 2011 May; 357(2):286-91. PubMed ID: 21377162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile hydrothermal synthesis of NiMoO4@CoMoO4 hierarchical nanospheres for supercapacitor applications.
    Zhang Z; Liu Y; Huang Z; Ren L; Qi X; Wei X; Zhong J
    Phys Chem Chem Phys; 2015 Aug; 17(32):20795-804. PubMed ID: 26214743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors.
    Li Y; Zhao X; Xu Q; Zhang Q; Chen D
    Langmuir; 2011 May; 27(10):6458-63. PubMed ID: 21488622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile fabrication of NH4CoPO4·H2O nano/microstructures and their primarily application as electrochemical supercapacitor.
    Pang H; Yan Z; Wang W; Chen J; Zhang J; Zheng H
    Nanoscale; 2012 Sep; 4(19):5946-53. PubMed ID: 22833216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox-induced enhancement in interfacial capacitance of the titania nanotube/bismuth oxide composite electrode.
    Sarma B; Jurovitzki AL; Smith YR; Mohanty SK; Misra M
    ACS Appl Mater Interfaces; 2013 Mar; 5(5):1688-97. PubMed ID: 23414084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the electrochemical performance of NiMoO4 nanorods and hierarchical nanospheres for supercapacitor applications.
    Cai D; Wang D; Liu B; Wang Y; Liu Y; Wang L; Li H; Huang H; Li Q; Wang T
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12905-10. PubMed ID: 24274769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactive effects of pore size control and carbonization temperatures on supercapacitive behaviors of porous carbon/carbon nanotube composites.
    Kim JI; Rhee KY; Park SJ
    J Colloid Interface Sci; 2012 Jul; 377(1):307-12. PubMed ID: 22494688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures.
    Subramanian V; Zhu H; Vajtai R; Ajayan PM; Wei B
    J Phys Chem B; 2005 Nov; 109(43):20207-14. PubMed ID: 16853612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen-enriched hierarchically porous carbons prepared from polybenzoxazine for high-performance supercapacitors.
    Wan L; Wang J; Xie L; Sun Y; Li K
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15583-96. PubMed ID: 25137068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 1-D structured flexible supercapacitor electrodes with prominent electronic/ionic transport capabilities.
    Kim JS; Shin SS; Han HS; Oh LS; Kim DH; Kim JH; Hong KS; Kim JY
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):268-74. PubMed ID: 24397749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailored Nanoarchitecturing of Microporous ZIF-8 to Hierarchically Porous Double-Shell Carbons and Their Intrinsic Electrochemical Property.
    Kim M; Park T; Wang C; Tang J; Lim H; Hossain MSA; Konarova M; Yi JW; Na J; Kim J; Yamauchi Y
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34065-34073. PubMed ID: 32686420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach.
    Ali GAM; Divyashree A; Supriya S; Chong KF; Ethiraj AS; Reddy MV; Algarni H; Hegde G
    Dalton Trans; 2017 Oct; 46(40):14034-14044. PubMed ID: 28979958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance supercapacitor based on nitrogen-doped porous carbon derived from zinc(II)-bis(8-hydroxyquinoline) coordination polymer.
    Chen XY; Xie DH; Chen C; Liu JW
    J Colloid Interface Sci; 2013 Mar; 393():241-8. PubMed ID: 23137906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors.
    Wang D; Wang Q; Wang T
    Inorg Chem; 2011 Jul; 50(14):6482-92. PubMed ID: 21671652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide.
    Meher SK; Justin P; Rao GR
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):2063-73. PubMed ID: 21568334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant-free scalable synthesis of hierarchically spherical Co3O4 superstructures and their enhanced lithium-ion storage performances.
    Guo X; Xu W; Li S; Liu Y; Li M; Qu X; Mao C; Cui X; Chen C
    Nanotechnology; 2012 Nov; 23(46):465401. PubMed ID: 23092943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ electrochemical polymerization of a nanorod-PANI-Graphene composite in a reverse micelle electrolyte and its application in a supercapacitor.
    Hu L; Tu J; Jiao S; Hou J; Zhu H; Fray DJ
    Phys Chem Chem Phys; 2012 Dec; 14(45):15652-6. PubMed ID: 23076399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.