These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 23749845)

  • 1. Data integration through proximity-based networks provides biological principles of organization across scales.
    Kleessen S; Klie S; Nikoloski Z
    Plant Cell; 2013 Jun; 25(6):1917-27. PubMed ID: 23749845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth stage-based phenotypic profiling of plants.
    Kjemtrup S; Boyes DC; Christensen C; McCaskill AJ; Hylton M; Davis K
    Methods Mol Biol; 2003; 236():427-42. PubMed ID: 14501080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AraNet: A Network Biology Server for Arabidopsis thaliana and Other Non-Model Plant Species.
    Lee T; Lee I
    Methods Mol Biol; 2017; 1629():225-238. PubMed ID: 28623589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximizing capture of gene co-expression relationships through pre-clustering of input expression samples: an Arabidopsis case study.
    Feltus FA; Ficklin SP; Gibson SM; Smith MC
    BMC Syst Biol; 2013 Jun; 7():44. PubMed ID: 23738693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic identification of functional modules and cis-regulatory elements in Arabidopsis thaliana.
    Ruan J; Perez J; Hernandez B; Lei C; Sunter G; Sponsel VM
    BMC Bioinformatics; 2011 Nov; 12 Suppl 12(Suppl 12):S2. PubMed ID: 22168340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PageRank-based identification of signaling crosstalk from transcriptomics data: the case of Arabidopsis thaliana.
    Omranian N; Mueller-Roeber B; Nikoloski Z
    Mol Biosyst; 2012 Apr; 8(4):1121-7. PubMed ID: 22327945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions.
    Carrera J; Rodrigo G; Jaramillo A; Elena SF
    Genome Biol; 2009; 10(9):R96. PubMed ID: 19754933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying Gene Regulatory Networks in Arabidopsis by In Silico Prediction, Yeast-1-Hybrid, and Inducible Gene Profiling Assays.
    Sparks EE; Benfey PN
    Methods Mol Biol; 2016; 1370():29-50. PubMed ID: 26659952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interlinked nonlinear subnetworks underlie the formation of robust cellular patterns in Arabidopsis epidermis: a dynamic spatial model.
    Benítez M; Espinosa-Soto C; Padilla-Longoria P; Alvarez-Buylla ER
    BMC Syst Biol; 2008 Nov; 2():98. PubMed ID: 19014692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of plant growth in view of an integrative analysis of regulatory networks.
    Wuyts N; Dhondt S; Inzé D
    Curr Opin Plant Biol; 2015 Jun; 25():90-7. PubMed ID: 26002069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Individual vs. combinatorial effect of elevated CO2 conditions and salinity stress on Arabidopsis thaliana liquid cultures: comparing the early molecular response using time-series transcriptomic and metabolomic analyses.
    Kanani H; Dutta B; Klapa MI
    BMC Syst Biol; 2010 Dec; 4():177. PubMed ID: 21190570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of variation in expression networks.
    Kliebenstein DJ
    Methods Mol Biol; 2009; 553():227-45. PubMed ID: 19588108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive post-genomic data analysis approaches integrating biochemical pathway maps.
    Lange BM; Ghassemian M
    Phytochemistry; 2005 Feb; 66(4):413-51. PubMed ID: 15694451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Similar bowtie structures and distinct largest strong components are identified in the transcriptional regulatory networks of Arabidopsis thaliana during photomorphogenesis and heat shock.
    Luo S; Zhang F; Ruan Y; Li J; Zhang Z; Sun Y; Deng S; Peng R
    Biosystems; 2018 Jun; 168():1-7. PubMed ID: 29715506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolomics in Plant Priming Research: The Way Forward?
    Tugizimana F; Mhlongo MI; Piater LA; Dubery IA
    Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29899301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A transcriptional dynamic network during Arabidopsis thaliana pollen development.
    Wang J; Qiu X; Li Y; Deng Y; Shi T
    BMC Syst Biol; 2011; 5 Suppl 3(Suppl 3):S8. PubMed ID: 22784627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin and Functional Prediction of Pollen Allergens in Plants.
    Chen M; Xu J; Devis D; Shi J; Ren K; Searle I; Zhang D
    Plant Physiol; 2016 Sep; 172(1):341-57. PubMed ID: 27436829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale plant ionomics.
    Danku JM; Lahner B; Yakubova E; Salt DE
    Methods Mol Biol; 2013; 953():255-76. PubMed ID: 23073889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From network to phenotype: the dynamic wiring of an Arabidopsis transcriptional network induced by osmotic stress.
    Van den Broeck L; Dubois M; Vermeersch M; Storme V; Matsui M; Inzé D
    Mol Syst Biol; 2017 Dec; 13(12):961. PubMed ID: 29269383
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.