These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 23749903)
1. Design, synthesis and in vitro anticancer evaluation of a stearic acid-based ester conjugate. Khan AA; Alanazi AM; Jabeen M; Chauhan A; Abdelhameed AS Anticancer Res; 2013 Jun; 33(6):2517-24. PubMed ID: 23749903 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and characterization of novel PUFA esters exhibiting potential anticancer activities: an in vitro study. Khan AA; Alam M; Tufail S; Mustafa J; Owais M Eur J Med Chem; 2011 Oct; 46(10):4878-86. PubMed ID: 21868138 [TBL] [Abstract][Full Text] [Related]
3. Anticancer properties of propofol-docosahexaenoate and propofol-eicosapentaenoate on breast cancer cells. Siddiqui RA; Zerouga M; Wu M; Castillo A; Harvey K; Zaloga GP; Stillwell W Breast Cancer Res; 2005; 7(5):R645-54. PubMed ID: 16168109 [TBL] [Abstract][Full Text] [Related]
4. Characterization of lovastatin-docosahexaenoate anticancer properties against breast cancer cells. Siddiqui RA; Harvey KA; Xu Z; Natarajan SK; Davisson VJ Bioorg Med Chem; 2014 Mar; 22(6):1899-908. PubMed ID: 24556504 [TBL] [Abstract][Full Text] [Related]
5. Propofol and bupivacaine in breast cancer cell function in vitro - role of the NET1 gene. Ecimovic P; Murray D; Doran P; Buggy DJ Anticancer Res; 2014 Mar; 34(3):1321-31. PubMed ID: 24596379 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of cell survival, cell cycle progression, tumor growth and cyclooxygenase-2 activity in MDA-MB-231 breast cancer cells by camphorataimide B. Lin WL; Lee YJ; Wang SM; Huang PY; Tseng TH Eur J Pharmacol; 2012 Apr; 680(1-3):8-15. PubMed ID: 22329896 [TBL] [Abstract][Full Text] [Related]
7. Anticancer SAR models for MCF-7 and MDA-MB-231 breast cell lines. Qamar S; Carrasquer CA; Cunningham SL; Cunningham AR Anticancer Res; 2011 Oct; 31(10):3247-52. PubMed ID: 21965732 [TBL] [Abstract][Full Text] [Related]
8. PH006, a novel and selective Src kinase inhibitor, suppresses human breast cancer growth and metastasis in vitro and in vivo. Ma JG; Huang H; Chen SM; Chen Y; Xin XL; Lin LP; Ding J; Liu H; Meng LH Breast Cancer Res Treat; 2011 Nov; 130(1):85-96. PubMed ID: 21181437 [TBL] [Abstract][Full Text] [Related]
9. Optimization, pharmacophore modeling and 3D-QSAR studies of sipholanes as breast cancer migration and proliferation inhibitors. Foudah AI; Sallam AA; Akl MR; El Sayed KA Eur J Med Chem; 2014 Feb; 73():310-24. PubMed ID: 24487236 [TBL] [Abstract][Full Text] [Related]
10. Novel signaling molecules implicated in tumor-associated fatty acid synthase-dependent breast cancer cell proliferation and survival: Role of exogenous dietary fatty acids, p53-p21WAF1/CIP1, ERK1/2 MAPK, p27KIP1, BRCA1, and NF-kappaB. Menendez JA; Mehmi I; Atlas E; Colomer R; Lupu R Int J Oncol; 2004 Mar; 24(3):591-608. PubMed ID: 14767544 [TBL] [Abstract][Full Text] [Related]
11. Tranilast treatment decreases cell growth, migration and inhibits colony formation of human breast cancer cells. Subramaniam V; Ace O; Prud'homme GJ; Jothy S Exp Mol Pathol; 2011 Feb; 90(1):116-22. PubMed ID: 21040720 [TBL] [Abstract][Full Text] [Related]
12. Berberine inhibits growth of the breast cancer cell lines MCF-7 and MDA-MB-231. Kim JB; Lee KM; Ko E; Han W; Lee JE; Shin I; Bae JY; Kim S; Noh DY Planta Med; 2008 Jan; 74(1):39-42. PubMed ID: 18203057 [TBL] [Abstract][Full Text] [Related]
13. Biological evaluation of 2,3-dichloro-5,8-dimethoxy-1,4-naphthoquinone as an anti-breast cancer agent. Kanaan YM; Das JR; Bakare O; Enwerem NM; Berhe S; Beyene D; Williams V; Zhou Y; Copeland RL Anticancer Res; 2009 Jan; 29(1):191-9. PubMed ID: 19331150 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells. Basu GD; Pathangey LB; Tinder TL; Gendler SJ; Mukherjee P Breast Cancer Res; 2005; 7(4):R422-35. PubMed ID: 15987447 [TBL] [Abstract][Full Text] [Related]
15. Punicic acid is an omega-5 fatty acid capable of inhibiting breast cancer proliferation. Grossmann ME; Mizuno NK; Schuster T; Cleary MP Int J Oncol; 2010 Feb; 36(2):421-6. PubMed ID: 20043077 [TBL] [Abstract][Full Text] [Related]
16. Synthesis, characterization and anticancer screening of some novel piperonyl-tetrazole derivatives. Arshad M; Bhat AR; Pokharel S; Kim JE; Lee EJ; Athar F; Choi I Eur J Med Chem; 2014 Jan; 71():229-36. PubMed ID: 24309000 [TBL] [Abstract][Full Text] [Related]
17. Design, synthesis, and biological activity of a family of novel ceramide analogues in chemoresistant breast cancer cells. Antoon JW; Liu J; Gestaut MM; Burow ME; Beckman BS; Foroozesh M J Med Chem; 2009 Sep; 52(18):5748-52. PubMed ID: 19694470 [TBL] [Abstract][Full Text] [Related]
18. HL-37, a novel anthracene derivative, induces Ca(2+)-mediated apoptosis in human breast cancer cells. Xie SQ; Zhang ZQ; Hu GQ; Xu M; Ji BS Toxicology; 2008 Dec; 254(1-2):68-74. PubMed ID: 18948164 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of the anticancer activities of thioflavanone and thioflavone in human breast cancer cell lines. Choi EJ; Lee JI; Kim GH Int J Mol Med; 2012 Feb; 29(2):252-6. PubMed ID: 22076075 [TBL] [Abstract][Full Text] [Related]
20. HIV-1 Tat peptide immunoconjugates differentially sensitize breast cancer cells to selected antiproliferative agents that induce the cyclin-dependent kinase inhibitor p21WAF-1/CIP-1. Hu M; Wang J; Chen P; Reilly RM Bioconjug Chem; 2006; 17(5):1280-7. PubMed ID: 16984139 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]