BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 23749995)

  • 1. Nucleotide excision repair in human cells: fate of the excised oligonucleotide carrying DNA damage in vivo.
    Hu J; Choi JH; Gaddameedhi S; Kemp MG; Reardon JT; Sancar A
    J Biol Chem; 2013 Jul; 288(29):20918-20926. PubMed ID: 23749995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA excision repair: where do all the dimers go?
    Kemp MG; Sancar A
    Cell Cycle; 2012 Aug; 11(16):2997-3002. PubMed ID: 22825251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of release and fate of excised oligonucleotides during nucleotide excision repair.
    Kemp MG; Reardon JT; Lindsey-Boltz LA; Sancar A
    J Biol Chem; 2012 Jun; 287(27):22889-99. PubMed ID: 22573372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin remodeler CHD1 promotes XPC-to-TFIIH handover of nucleosomal UV lesions in nucleotide excision repair.
    Rüthemann P; Balbo Pogliano C; Codilupi T; Garajovà Z; Naegeli H
    EMBO J; 2017 Nov; 36(22):3372-3386. PubMed ID: 29018037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor suppressor p53 dependent recruitment of nucleotide excision repair factors XPC and TFIIH to DNA damage.
    Wang QE; Zhu Q; Wani MA; Wani G; Chen J; Wani AA
    DNA Repair (Amst); 2003 May; 2(5):483-99. PubMed ID: 12713809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction mechanism of human DNA repair excision nuclease.
    Mu D; Hsu DS; Sancar A
    J Biol Chem; 1996 Apr; 271(14):8285-94. PubMed ID: 8626523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of CAK complex accumulation at DNA damage sites in XP-B and XP-B/CS fibroblasts reveals differential regulation of CAK anchoring to core TFIIH by XPB and XPD helicases during nucleotide excision repair.
    Zhu Q; Wani G; Sharma N; Wani A
    DNA Repair (Amst); 2012 Dec; 11(12):942-50. PubMed ID: 23083890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mycobacteria excise DNA damage in 12- or 13-nucleotide-long oligomers by prokaryotic-type dual incisions and performs transcription-coupled repair.
    Selby CP; Lindsey-Boltz LA; Yang Y; Sancar A
    J Biol Chem; 2020 Dec; 295(50):17374-17380. PubMed ID: 33087442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study of nucleotide excision repair defects between XPD-mutated fibroblasts derived from trichothiodystrophy and xeroderma pigmentosum patients.
    Nishiwaki T; Kobayashi N; Iwamoto T; Yamamoto A; Sugiura S; Liu YC; Sarasin A; Okahashi Y; Hirano M; Ueno S; Mori T
    DNA Repair (Amst); 2008 Dec; 7(12):1990-8. PubMed ID: 18817897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA repair synthesis and ligation affect the processing of excised oligonucleotides generated by human nucleotide excision repair.
    Kemp MG; Gaddameedhi S; Choi JH; Hu J; Sancar A
    J Biol Chem; 2014 Sep; 289(38):26574-26583. PubMed ID: 25107903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of nucleotide excision repair by mammalian SWI/SNF chromatin-remodeling complex.
    Zhao Q; Wang QE; Ray A; Wani G; Han C; Milum K; Wani AA
    J Biol Chem; 2009 Oct; 284(44):30424-32. PubMed ID: 19740755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide excision repair by dual incisions in plants.
    Canturk F; Karaman M; Selby CP; Kemp MG; Kulaksiz-Erkmen G; Hu J; Li W; Lindsey-Boltz LA; Sancar A
    Proc Natl Acad Sci U S A; 2016 Apr; 113(17):4706-10. PubMed ID: 27071131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DDB accumulates at DNA damage sites immediately after UV irradiation and directly stimulates nucleotide excision repair.
    Wakasugi M; Kawashima A; Morioka H; Linn S; Sancar A; Mori T; Nikaido O; Matsunaga T
    J Biol Chem; 2002 Jan; 277(3):1637-40. PubMed ID: 11705987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotide excision repair proteins rapidly accumulate but fail to persist in human XP-E (DDB2 mutant) cells.
    Oh KS; Imoto K; Emmert S; Tamura D; DiGiovanna JJ; Kraemer KH
    Photochem Photobiol; 2011; 87(3):729-33. PubMed ID: 21388382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair.
    Sugasawa K
    DNA Repair (Amst); 2016 Aug; 44():110-117. PubMed ID: 27264556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide analysis of human global and transcription-coupled excision repair of UV damage at single-nucleotide resolution.
    Hu J; Adar S; Selby CP; Lieb JD; Sancar A
    Genes Dev; 2015 May; 29(9):948-60. PubMed ID: 25934506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA nucleotide excision repair, where do all the cyclobutane pyrimidine dimers go?
    Cooke MS; Harry EL; Liljendahl TS; Segerbäck D
    Cell Cycle; 2013 May; 12(10):1642. PubMed ID: 23603991
    [No Abstract]   [Full Text] [Related]  

  • 18. Nucleotide excision repair driven by the dissociation of CAK from TFIIH.
    Coin F; Oksenych V; Mocquet V; Groh S; Blattner C; Egly JM
    Mol Cell; 2008 Jul; 31(1):9-20. PubMed ID: 18614043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slowly progressing nucleotide excision repair in trichothiodystrophy group A patient fibroblasts.
    Theil AF; Nonnekens J; Wijgers N; Vermeulen W; Giglia-Mari G
    Mol Cell Biol; 2011 Sep; 31(17):3630-8. PubMed ID: 21730288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Insight into the Mechanism of TFIIH Recognition by the Acidic String of the Nucleotide Excision Repair Factor XPC.
    Okuda M; Kinoshita M; Kakumu E; Sugasawa K; Nishimura Y
    Structure; 2015 Oct; 23(10):1827-1837. PubMed ID: 26278177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.