These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 23750609)
41. Initiation mechanisms and kinetics of pyrolysis and combustion of JP-10 hydrocarbon jet fuel. Chenoweth K; van Duin AC; Dasgupta S; Goddard WA J Phys Chem A; 2009 Mar; 113(9):1740-6. PubMed ID: 19209880 [TBL] [Abstract][Full Text] [Related]
42. First-principles-based reaction kinetics from reactive molecular dynamics simulations: Application to hydrogen peroxide decomposition. Ilyin DV; Goddard WA; Oppenheim JJ; Cheng T Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18202-18208. PubMed ID: 30242137 [TBL] [Abstract][Full Text] [Related]
43. First principle and ReaxFF molecular dynamics investigations of formaldehyde dissociation on Fe(100) surface. Yamada T; Phelps DK; van Duin AC J Comput Chem; 2013 Sep; 34(23):1982-96. PubMed ID: 23804527 [TBL] [Abstract][Full Text] [Related]
44. Simulating the initial stage of phenolic resin carbonization via the ReaxFF reactive force field. Jiang DE; van Duin AC; Goddard WA; Dai S J Phys Chem A; 2009 Jun; 113(25):6891-4. PubMed ID: 19496580 [TBL] [Abstract][Full Text] [Related]
45. Development of a ReaxFF potential for Pd∕O and application to palladium oxide formation. Senftle TP; Meyer RJ; Janik MJ; van Duin AC J Chem Phys; 2013 Jul; 139(4):044109. PubMed ID: 23901962 [TBL] [Abstract][Full Text] [Related]
46. Reactive Molecular Dynamics Simulation of Fullerene Combustion Synthesis: ReaxFF vs DFTB Potentials. Qian HJ; van Duin AC; Morokuma K; Irle S J Chem Theory Comput; 2011 Jul; 7(7):2040-8. PubMed ID: 26606475 [TBL] [Abstract][Full Text] [Related]
47. Development of a ReaxFF reactive force field for glycine and application to solvent effect and tautomerization. Rahaman O; van Duin AC; Goddard WA; Doren DJ J Phys Chem B; 2011 Jan; 115(2):249-61. PubMed ID: 21166434 [TBL] [Abstract][Full Text] [Related]
48. An interatomic potential for saturated hydrocarbons based on the modified embedded-atom method. Nouranian S; Tschopp MA; Gwaltney SR; Baskes MI; Horstemeyer MF Phys Chem Chem Phys; 2014 Apr; 16(13):6233-49. PubMed ID: 24566869 [TBL] [Abstract][Full Text] [Related]
49. Development and validation of a general-purpose ReaxFF reactive force field for earth material modeling. Zhang Y; Liu X; van Duin ACT; Lu X; Meijer EJ J Chem Phys; 2024 Mar; 160(9):. PubMed ID: 38426512 [TBL] [Abstract][Full Text] [Related]
50. Development of the ReaxFFCBN reactive force field for the improved design of liquid CBN hydrogen storage materials. Pai SJ; Yeo BC; Han SS Phys Chem Chem Phys; 2016 Jan; 18(3):1818-27. PubMed ID: 26681481 [TBL] [Abstract][Full Text] [Related]
51. Atomistic Scale Analysis of the Carbonization Process for C/H/O/N-Based Polymers with the ReaxFF Reactive Force Field. Kowalik M; Ashraf C; Damirchi B; Akbarian D; Rajabpour S; van Duin ACT J Phys Chem B; 2019 Jun; 123(25):5357-5367. PubMed ID: 31145615 [TBL] [Abstract][Full Text] [Related]
52. Molecular dynamics simulation of O2 sticking on Pt(111) using the ab initio based ReaxFF reactive force field. Valentini P; Schwartzentruber TE; Cozmuta I J Chem Phys; 2010 Aug; 133(8):084703. PubMed ID: 20815586 [TBL] [Abstract][Full Text] [Related]
53. Parameterization of reactive force field: dynamics of the [Nb6O19H(x)]((8-x)-) Lindqvist polyoxoanion in bulk water. Kaledin AL; van Duin AC; Hill CL; Musaev DG J Phys Chem A; 2013 Aug; 117(32):6967-74. PubMed ID: 23394309 [TBL] [Abstract][Full Text] [Related]
54. Reactive molecular dynamics simulation on the disintegration of Kapton, POSS polyimide, amorphous silica, and teflon during atomic oxygen impact using the ReaxFF reactive force-field method. Rahnamoun A; van Duin AC J Phys Chem A; 2014 Apr; 118(15):2780-7. PubMed ID: 24679339 [TBL] [Abstract][Full Text] [Related]
55. Atomistic insights into aqueous corrosion of copper. Jeon B; Sankaranarayanan SK; van Duin AC; Ramanathan S J Chem Phys; 2011 Jun; 134(23):234706. PubMed ID: 21702575 [TBL] [Abstract][Full Text] [Related]
56. Combustion of 1,5-dinitrobiuret (DNB) in the presence of nitric acid using ReaxFF molecular dynamics simulations. Russo MF; Bedrov D; Singhai S; van Duin AC J Phys Chem A; 2013 Sep; 117(38):9216-23. PubMed ID: 23985064 [TBL] [Abstract][Full Text] [Related]
57. A Reactive Force Field for Molecular Dynamics Simulations of Glucose in Aqueous Solution. Cui H; Lai R; Yuan S; Liao C; Wang A; Li G J Chem Theory Comput; 2023 Jul; 19(13):4286-4298. PubMed ID: 37306495 [TBL] [Abstract][Full Text] [Related]
58. Reaction analysis and visualization of ReaxFF molecular dynamics simulations. Liu J; Li X; Guo L; Zheng M; Han J; Yuan X; Nie F; Liu X J Mol Graph Model; 2014 Sep; 53():13-22. PubMed ID: 25064439 [TBL] [Abstract][Full Text] [Related]
59. ReaxFF-lg: correction of the ReaxFF reactive force field for London dispersion, with applications to the equations of state for energetic materials. Liu L; Liu Y; Zybin SV; Sun H; Goddard WA J Phys Chem A; 2011 Oct; 115(40):11016-22. PubMed ID: 21888351 [TBL] [Abstract][Full Text] [Related]
60. Initial Decomposition Mechanism of 3-Nitro-1,2,4-triazol-5-one (NTO) under Shock Loading: ReaxFF Parameterization and Molecular Dynamic Study. Du L; Jin S; Nie P; She C; Wang J Molecules; 2021 Aug; 26(16):. PubMed ID: 34443396 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]