These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
446 related articles for article (PubMed ID: 23751003)
1. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Tseng BS; Zhang W; Harrison JJ; Quach TP; Song JL; Penterman J; Singh PK; Chopp DL; Packman AI; Parsek MR Environ Microbiol; 2013 Oct; 15(10):2865-78. PubMed ID: 23751003 [TBL] [Abstract][Full Text] [Related]
2. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Walters MC; Roe F; Bugnicourt A; Franklin MJ; Stewart PS Antimicrob Agents Chemother; 2003 Jan; 47(1):317-23. PubMed ID: 12499208 [TBL] [Abstract][Full Text] [Related]
3. Asiatic acid and corosolic acid enhance the susceptibility of Pseudomonas aeruginosa biofilms to tobramycin. Garo E; Eldridge GR; Goering MG; DeLancey Pulcini E; Hamilton MA; Costerton JW; James GA Antimicrob Agents Chemother; 2007 May; 51(5):1813-7. PubMed ID: 17353241 [TBL] [Abstract][Full Text] [Related]
4. Improved Biofilm Antimicrobial Activity of Polyethylene Glycol Conjugated Tobramycin Compared to Tobramycin in Pseudomonas aeruginosa Biofilms. Du J; Bandara HM; Du P; Huang H; Hoang K; Nguyen D; Mogarala SV; Smyth HD Mol Pharm; 2015 May; 12(5):1544-53. PubMed ID: 25793309 [TBL] [Abstract][Full Text] [Related]
5. Mucoid Pseudomonas aeruginosa Can Produce Calcium-Gelled Biofilms Independent of the Matrix Components Psl and CdrA. Jacobs HM; O'Neal L; Lopatto E; Wozniak DJ; Bjarnsholt T; Parsek MR J Bacteriol; 2022 May; 204(5):e0056821. PubMed ID: 35416688 [TBL] [Abstract][Full Text] [Related]
6. Effects of iron depletion on antimicrobial activities against planktonic and biofilm Pseudomonas aeruginosa. Cai Y; Yu XH; Wang R; An MM; Liang BB J Pharm Pharmacol; 2009 Sep; 61(9):1257-62. PubMed ID: 19703377 [TBL] [Abstract][Full Text] [Related]
7. Characterizations of the viability and gene expression of dispersal cells from Pseudomonas aeruginosa biofilms released by alginate lyase and tobramycin. Daboor SM; Raudonis R; Cheng Z PLoS One; 2021; 16(10):e0258950. PubMed ID: 34695148 [TBL] [Abstract][Full Text] [Related]
8. Contribution of stress responses to antibiotic tolerance in Pseudomonas aeruginosa biofilms. Stewart PS; Franklin MJ; Williamson KS; Folsom JP; Boegli L; James GA Antimicrob Agents Chemother; 2015 Jul; 59(7):3838-47. PubMed ID: 25870065 [TBL] [Abstract][Full Text] [Related]
9. Spatiotemporal pharmacodynamics of meropenem- and tobramycin-treated Pseudomonas aeruginosa biofilms. Haagensen J; Verotta D; Huang L; Engel J; Spormann AM; Yang K J Antimicrob Chemother; 2017 Dec; 72(12):3357-3365. PubMed ID: 28961810 [TBL] [Abstract][Full Text] [Related]
11. Disruption of the extracellular polymeric network of Pseudomonas aeruginosa biofilms by alginate lyase enhances pathogen eradication by antibiotics. Daboor SM; Rohde JR; Cheng Z J Cyst Fibros; 2021 Mar; 20(2):264-270. PubMed ID: 32482592 [TBL] [Abstract][Full Text] [Related]
12. Neutralization of ionic interactions by dextran-based single-chain nanoparticles improves tobramycin diffusion into a mature biofilm. Blanco-Cabra N; Movellan J; Marradi M; Gracia R; Salvador C; Dupin D; Loinaz I; Torrents E NPJ Biofilms Microbiomes; 2022 Jul; 8(1):52. PubMed ID: 35787627 [TBL] [Abstract][Full Text] [Related]
13. Synergistic Meropenem-Tobramycin Combination Dosage Regimens against Clinical Hypermutable Pseudomonas aeruginosa at Simulated Epithelial Lining Fluid Concentrations in a Dynamic Biofilm Model. Bilal H; Bergen PJ; Kim TH; Chung SE; Peleg AY; Oliver A; Nation RL; Landersdorfer CB Antimicrob Agents Chemother; 2019 Nov; 63(11):. PubMed ID: 31427301 [TBL] [Abstract][Full Text] [Related]
14. Role of Viscoelasticity in Bacterial Killing by Antimicrobials in Differently Grown Rozenbaum RT; van der Mei HC; Woudstra W; de Jong ED; Busscher HJ; Sharma PK Antimicrob Agents Chemother; 2019 Apr; 63(4):. PubMed ID: 30745390 [No Abstract] [Full Text] [Related]
15. Influence of Excipients on the Antimicrobial Activity of Tobramycin Against Pseudomonas aeruginosa Biofilms. Bahamondez-Canas T; Smyth HDC Pharm Res; 2018 Jan; 35(1):10. PubMed ID: 29294187 [TBL] [Abstract][Full Text] [Related]
16. A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Brooun A; Liu S; Lewis K Antimicrob Agents Chemother; 2000 Mar; 44(3):640-6. PubMed ID: 10681331 [TBL] [Abstract][Full Text] [Related]
17. Synergistic effects of heat and antibiotics on Pseudomonas aeruginosa biofilms. Ricker EB; Nuxoll E Biofouling; 2017 Nov; 33(10):855-866. PubMed ID: 29039211 [TBL] [Abstract][Full Text] [Related]
18. Formation of Pseudomonas aeruginosa inhibition zone during tobramycin disk diffusion is due to transition from planktonic to biofilm mode of growth. Høiby N; Henneberg KÅ; Wang H; Stavnsbjerg C; Bjarnsholt T; Ciofu O; Johansen UR; Sams T Int J Antimicrob Agents; 2019 May; 53(5):564-573. PubMed ID: 30615928 [TBL] [Abstract][Full Text] [Related]
19. In vitro analysis of tobramycin-treated Pseudomonas aeruginosa biofilms on cystic fibrosis-derived airway epithelial cells. Anderson GG; Moreau-Marquis S; Stanton BA; O'Toole GA Infect Immun; 2008 Apr; 76(4):1423-33. PubMed ID: 18212077 [TBL] [Abstract][Full Text] [Related]
20. Meloxicam inhibits biofilm formation and enhances antimicrobial agents efficacy by Pseudomonas aeruginosa. She P; Wang Y; Luo Z; Chen L; Tan R; Wang Y; Wu Y Microbiologyopen; 2018 Feb; 7(1):. PubMed ID: 29178590 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]