These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 23751101)

  • 1. Anisotropic dielectric relaxation of the water confined in nanotubes for terahertz spectroscopy studied by molecular dynamics simulations.
    Qi W; Chen J; Yang J; Lei X; Song B; Fang H
    J Phys Chem B; 2013 Jul; 117(26):7967-71. PubMed ID: 23751101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen bond network in the hydration layer of the water confined in nanotubes increasing the dielectric constant parallel along the nanotube axis.
    Qi W; Zhao H
    J Chem Phys; 2015 Sep; 143(11):114708. PubMed ID: 26395729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulation for the structure of the water chain in a transmembrane peptide nanotube.
    Liu J; Fan J; Tang M; Zhou W
    J Phys Chem A; 2010 Feb; 114(6):2376-83. PubMed ID: 20099797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculated Terahertz Spectra of Glycine Oligopeptide Solutions Confined in Carbon Nanotubes.
    Ling D; Zhang M; Song J; Wei D
    Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does urea alter the collective hydrogen-bond dynamics in water? A dielectric relaxation study in the terahertz-frequency region.
    Samanta N; Das Mahanta D; Kumar Mitra R
    Chem Asian J; 2014 Dec; 9(12):3457-63. PubMed ID: 25277797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropy of the water-carbon interaction: molecular simulations of water in low-diameter carbon nanotubes.
    Pérez-Hernández G; Schmidt B
    Phys Chem Chem Phys; 2013 Apr; 15(14):4995-5006. PubMed ID: 23443614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectric and terahertz spectroscopy of polarizable and nonpolarizable water models: a comparative study.
    Sega M; Schröder C
    J Phys Chem A; 2015 Mar; 119(9):1539-47. PubMed ID: 25120165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio molecular dynamics simulations of water and an excess proton in water confined in carbon nanotubes.
    Clark JK; Paddison SJ
    Phys Chem Chem Phys; 2014 Sep; 16(33):17756-69. PubMed ID: 25030323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase transition study of confined water molecules inside carbon nanotubes: hierarchical multiscale method from molecular dynamics simulation to ab initio calculation.
    Javadian S; Taghavi F; Yari F; Hashemianzadeh SM
    J Mol Graph Model; 2012 Sep; 38():40-9. PubMed ID: 23085156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strongly anisotropic orientational relaxation of water molecules in narrow carbon nanotubes and nanorings.
    Mukherjee B; Maiti PK; Dasgupta C; Sood AK
    ACS Nano; 2008 Jun; 2(6):1189-96. PubMed ID: 19206336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ice-like water monolayer near the wall makes inner water shells diffuse faster inside a charged nanotube.
    Zhou X; Wang C; Wu F; Feng M; Li J; Lu H; Zhou R
    J Chem Phys; 2013 May; 138(20):204710. PubMed ID: 23742503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collective hydration dynamics of guanidinium chloride solutions and its possible role in protein denaturation: a terahertz spectroscopic study.
    Samanta N; Mahanta DD; Mitra RK
    Phys Chem Chem Phys; 2014 Nov; 16(42):23308-15. PubMed ID: 25259383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulations of structural and dynamic anisotropy in nano-confined water between parallel graphite plates.
    Mosaddeghi H; Alavi S; Kowsari MH; Najafi B
    J Chem Phys; 2012 Nov; 137(18):184703. PubMed ID: 23163385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sub-THz specific relaxation times of hydrogen bond oscillations in E.coli thioredoxin. Molecular dynamics and statistical analysis.
    Globus T; Sizov I; Gelmont B
    Faraday Discuss; 2014; 171():179-93. PubMed ID: 25415676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rattling in the cage: ions as probes of sub-picosecond water network dynamics.
    Schmidt DA; Birer O; Funkner S; Born BP; Gnanasekaran R; Schwaab GW; Leitner DM; Havenith M
    J Am Chem Soc; 2009 Dec; 131(51):18512-7. PubMed ID: 19928959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio molecular dynamics simulations of aqueous triflic acid confined in carbon nanotubes.
    Clark JK; Habenicht BF; Paddison SJ
    Phys Chem Chem Phys; 2014 Aug; 16(31):16465-79. PubMed ID: 24983213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous Debye-like dielectric relaxation of water in micro-sized confined polymeric systems.
    Colosi C; Costantini M; Barbetta A; Cametti C; Dentini M
    Phys Chem Chem Phys; 2013 Dec; 15(46):20153-60. PubMed ID: 24162131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dielectric properties of fully hydrated nucleotides in the terahertz frequency range.
    Glancy P; Beyermann WP
    J Chem Phys; 2010 Jun; 132(24):245102. PubMed ID: 20590216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulation of single-walled silicon carbide nanotubes immersed in water.
    Taghavi F; Javadian S; Hashemianzadeh SM
    J Mol Graph Model; 2013 Jul; 44():33-43. PubMed ID: 23732304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water-titanate intercalated nanotubes: fabrication, polarization, and giant dielectric property.
    Hu W; Li L; Tong W; Li G
    Phys Chem Chem Phys; 2010 Oct; 12(39):12638-46. PubMed ID: 20730216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.