These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 23751127)
1. Organogels from dimeric bile acid esters: in situ formation of gold nanoparticles. Chakrabarty A; Maitra U J Phys Chem B; 2013 Jul; 117(26):8039-46. PubMed ID: 23751127 [TBL] [Abstract][Full Text] [Related]
2. Charge-transfer interaction mediated organogels from bile acid appended anthracenes: rheological and microscopic studies. Kandanelli R; Maitra U Photochem Photobiol Sci; 2012 Nov; 11(11):1724-9. PubMed ID: 22895532 [TBL] [Abstract][Full Text] [Related]
3. Bile acid alkylamide derivatives as low molecular weight organogelators: systematic gelation studies and qualitative structural analysis of the systems. Löfman M; Koivukorpi J; Noponen V; Salo H; Sievänen E J Colloid Interface Sci; 2011 Aug; 360(2):633-44. PubMed ID: 21621792 [TBL] [Abstract][Full Text] [Related]
4. Birefringent physical gels of N-(4-n-alkyloxybenzoyl)-L-alanine amphiphiles in organic solvents: the role of hydrogen-bonding. Patra T; Pal A; Dey J J Colloid Interface Sci; 2010 Apr; 344(1):10-20. PubMed ID: 20097349 [TBL] [Abstract][Full Text] [Related]
5. Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent. Patel AR; Babaahmadi M; Lesaffer A; Dewettinck K J Agric Food Chem; 2015 May; 63(19):4862-9. PubMed ID: 25932656 [TBL] [Abstract][Full Text] [Related]
6. Aqueous dispersions of organogel nanoparticles - potential systems for cosmetic and dermo-cosmetic applications. Kirilov P; Rum S; Gilbert E; Roussel L; Salmon D; Abdayem R; Serre C; Villa C; Haftek M; Falson F; Pirot F Int J Cosmet Sci; 2014 Aug; 36(4):336-46. PubMed ID: 24749969 [TBL] [Abstract][Full Text] [Related]
7. Hierarchical self-assembly of photoluminescent CdS nanoparticles into a bile acid derived organogel: morphological and photophysical properties. Chatterjee S; Maitra U Phys Chem Chem Phys; 2017 Jul; 19(27):17726-17734. PubMed ID: 28657088 [TBL] [Abstract][Full Text] [Related]
8. Pyrene-containing peptide-based fluorescent organogels: inclusion of graphene into the organogel. Adhikari B; Nanda J; Banerjee A Chemistry; 2011 Oct; 17(41):11488-96. PubMed ID: 21953927 [TBL] [Abstract][Full Text] [Related]
9. Smart oligopeptide gels: in situ formation and stabilization of gold and silver nanoparticles within supramolecular organogel networks. Ray S; Das AK; Banerjee A Chem Commun (Camb); 2006 Jul; (26):2816-8. PubMed ID: 17009473 [TBL] [Abstract][Full Text] [Related]
10. Strength enhancement of nanostructured organogels through inclusion of phthalocyanine-containing complementary organogelator structures and in situ cross-linking by click chemistry. Díaz DD; Cid JJ; Vázquez P; Torres T Chemistry; 2008; 14(30):9261-73. PubMed ID: 18729114 [TBL] [Abstract][Full Text] [Related]
11. Functionalization of silver and gold nanoparticles using amino acid conjugated bile salts with tunable longitudinal plasmon resonance. Kasthuri J; Rajendiran N Colloids Surf B Biointerfaces; 2009 Oct; 73(2):387-93. PubMed ID: 19577440 [TBL] [Abstract][Full Text] [Related]
12. Bile acid amidoalcohols: simple organogelators. Valkonen A; Lahtinen M; Virtanen E; Kaikkonen S; Kolehmainen E Biosens Bioelectron; 2004 Dec; 20(6):1233-41. PubMed ID: 15556372 [TBL] [Abstract][Full Text] [Related]
13. Alterations in nanoparticle protein corona by biological surfactants: impact of bile salts on β-lactoglobulin-coated gold nanoparticles. Winuprasith T; Chantarak S; Suphantharika M; He L; McClements DJ J Colloid Interface Sci; 2014 Jul; 426():333-40. PubMed ID: 24863801 [TBL] [Abstract][Full Text] [Related]
19. Choice of the end functional groups in tri(p-phenylenevinylene) derivatives controls its physical gelation abilities. Samanta SK; Pal A; Bhattacharya S Langmuir; 2009 Aug; 25(15):8567-78. PubMed ID: 19402602 [TBL] [Abstract][Full Text] [Related]