BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 23751223)

  • 1. Comparative studies by IR, Raman, and surface-enhanced Raman spectroscopy of azodicarbonamide, biurea and semicarbazide hydrochloride.
    Xie Y; Li P; Zhang J; Wang H; Qian H; Yao W
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():80-4. PubMed ID: 23751223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semicarbazide formation in flour and bread.
    Noonan GO; Begley TH; Diachenko GW
    J Agric Food Chem; 2008 Mar; 56(6):2064-7. PubMed ID: 18303820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the determination of azodicarbonamide and its decomposition product semicarbazide: investigation of variation in flour and flour products.
    Ye J; Wang XH; Sang YX; Liu Q
    J Agric Food Chem; 2011 Sep; 59(17):9313-8. PubMed ID: 21786817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The determination of biurea: a novel method to discriminate between nitrofurazone and azodicarbonamide use in food products.
    Mulder PP; Beumer B; Van Rhijn JA
    Anal Chim Acta; 2007 Mar; 586(1-2):366-73. PubMed ID: 17386736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semicarbazide formation in azodicarbonamide-treated flour: a model study.
    Becalski A; Lau BP; Lewis D; Seaman SW
    J Agric Food Chem; 2004 Sep; 52(18):5730-4. PubMed ID: 15373416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Colorimetric Sensor for the Visual Detection of Azodicarbonamide in Flour Based on Azodicarbonamide-Induced Anti-Aggregation of Gold Nanoparticles.
    Chen Z; Chen L; Lin L; Wu Y; Fu F
    ACS Sens; 2018 Oct; 3(10):2145-2151. PubMed ID: 30239191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications of the use of semicarbazide as a metabolic target of nitrofurazone contamination in coated products.
    Pereira AS; Donato JL; De Nucci G
    Food Addit Contam; 2004 Jan; 21(1):63-9. PubMed ID: 14744681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical calculation (DFT), Raman and surface-enhanced Raman scattering (SERS) study of ponceau 4R.
    Xie Y; Li Y; Sun Y; Wang H; Qian H; Yao W
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():600-4. PubMed ID: 22868331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative studies on IR, Raman, and surface enhanced Raman scattering spectroscopy of dipeptides containing ΔAla and ΔPhe.
    Malek K; Makowski M; Królikowska A; Bukowska J
    J Phys Chem B; 2012 Feb; 116(4):1414-25. PubMed ID: 22208201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Raman spectroscopy, surface-enhanced Raman scattering (SERS), and density functional theory for the identification of phenethylamines.
    Taplin F; O'Donnell D; Kubic T; Leona M; Lombardi J
    Appl Spectrosc; 2013 Oct; 67(10):1150-9. PubMed ID: 24067571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semicarbazide in Canadian bakery products.
    Becalski A; Lau BP; Lewis D; Seaman S
    Food Addit Contam; 2006 Feb; 23(2):107-9. PubMed ID: 16449051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semicarbazide - from state-of-the-art analytical methods and exposure to toxicity: a review.
    Tian WR; Sang YX; Wang XH
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2014; 31(11):1850-60. PubMed ID: 25127068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid determination of trace semicarbazide in flour products by high-performance liquid chromatography based on a nucleophilic substitution reaction.
    Wei T; Li G; Zhang Z
    J Sep Sci; 2017 May; 40(9):1993-2001. PubMed ID: 28244190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols.
    Alvarez-Puebla RA; Dos Santos Júnior DS; Aroca RF
    Analyst; 2004 Dec; 129(12):1251-6. PubMed ID: 15565227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated In-Injector Derivatization Combined with High-Performance Liquid Chromatography-Fluorescence Detection for the Determination of Semicarbazide in Fish and Bread Samples.
    Wang Y; Chan W
    J Agric Food Chem; 2016 Apr; 64(13):2802-8. PubMed ID: 26985968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-enhanced vibrational spectra of 2-nitrofluorene.
    Carrasco-Flores EA; Campos-Vallette MM; Clavijo RE
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Feb; 66(2):474-9. PubMed ID: 16859958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid surface enhanced Raman scattering detection method for chloramphenicol residues.
    Ji W; Yao W
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 144():125-30. PubMed ID: 25754387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Visible/Near-Infrared Spectroscopy in the Prediction of Azodicarbonamide in Wheat Flour.
    Che W; Sun L; Zhang Q; Zhang D; Ye D; Tan W; Wang L; Dai C
    J Food Sci; 2017 Oct; 82(10):2516-2525. PubMed ID: 28892170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual determination of azodicarbonamide in flour by label-free silver nanoparticle colorimetry.
    Chen F; Liu L; Zhang W; Wu W; Zhao X; Chen N; Zhang M; Guo F; Qin Y
    Food Chem; 2021 Feb; 337():127990. PubMed ID: 32919272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density functional theory studies on the Raman and IR spectra of meso-tetraphenylporphyrin diacid.
    Xu LC; Li ZY; Tan W; He TJ; Liu FC; Chen DM
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Dec; 62(4-5):850-62. PubMed ID: 16303631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.