These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 23751357)

  • 1. Genome editing of human pluripotent stem cells to generate human cellular disease models.
    Musunuru K
    Dis Model Mech; 2013 Jul; 6(4):896-904. PubMed ID: 23751357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induced Pluripotent Stem Cells and Induced Pluripotent Cancer Cells in Cancer Disease Modeling.
    Zhu D; Kong CSL; Gingold JA; Zhao R; Lee DF
    Adv Exp Med Biol; 2018; 1119():169-183. PubMed ID: 30069853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convergence of human pluripotent stem cell, organoid, and genome editing technologies.
    Wang L; Ye Z; Jang YY
    Exp Biol Med (Maywood); 2021 Apr; 246(7):861-875. PubMed ID: 33467883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [From Gurdon to Yamanaka--a brief history of cell reprogramming].
    Kubiak JZ; Ciemerych MA
    Postepy Biochem; 2013; 59(2):124-30. PubMed ID: 24044277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of genome editing tools in human stem cell-based disease modeling and precision medicine.
    Wei YD; Li S; Liu GG; Zhang YX; Ding QR
    Yi Chuan; 2015 Oct; 37(10):983-91. PubMed ID: 26496750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reprogramming rewarded: the 2012 Nobel Prize for Physiology or Medicine awarded to John Gurdon and Shinya Yamanaka.
    Johnson MH; Cohen J
    Reprod Biomed Online; 2012 Dec; 25(6):549-50. PubMed ID: 23211094
    [No Abstract]   [Full Text] [Related]  

  • 7. Roles of small molecules in somatic cell reprogramming.
    Su JB; Pei DQ; Qin BM
    Acta Pharmacol Sin; 2013 Jun; 34(6):719-24. PubMed ID: 23728722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minireview: Genome Editing of Human Pluripotent Stem Cells for Modeling Metabolic Disease.
    Yu H; Cowan CA
    Mol Endocrinol; 2016 Jun; 30(6):575-86. PubMed ID: 27075706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing precision medicine using scarless genome editing of human pluripotent stem cells.
    Steyer B; Cory E; Saha K
    Drug Discov Today Technol; 2018 Aug; 28():3-12. PubMed ID: 30205878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profile of John Gurdon and Shinya Yamanaka, 2012 Nobel laureates in medicine or physiology.
    Colman A
    Proc Natl Acad Sci U S A; 2013 Apr; 110(15):5740-1. PubMed ID: 23538305
    [No Abstract]   [Full Text] [Related]  

  • 11. Cellular alchemy and the golden age of reprogramming.
    Daley GQ
    Cell; 2012 Dec; 151(6):1151-4. PubMed ID: 23217698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of the Pluripotent Stem Cells and Genomics in Cardiovascular Research-What We Have Learnt and Not Learnt until Now.
    Simeon M; Dangwal S; Sachinidis A; Doss MX
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome editing in pluripotent stem cells: research and therapeutic applications.
    Deleidi M; Yu C
    Biochem Biophys Res Commun; 2016 May; 473(3):665-74. PubMed ID: 26930470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs.
    Ding Q; Regan SN; Xia Y; Oostrom LA; Cowan CA; Musunuru K
    Cell Stem Cell; 2013 Apr; 12(4):393-4. PubMed ID: 23561441
    [No Abstract]   [Full Text] [Related]  

  • 15. Genome Editing in Human Pluripotent Stem Cells.
    Carlson-Stevermer J; Saha K
    Methods Mol Biol; 2017; 1590():165-174. PubMed ID: 28353269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small molecules promote CRISPR-Cpf1-mediated genome editing in human pluripotent stem cells.
    Ma X; Chen X; Jin Y; Ge W; Wang W; Kong L; Ji J; Guo X; Huang J; Feng XH; Fu J; Zhu S
    Nat Commun; 2018 Apr; 9(1):1303. PubMed ID: 29610531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient CRISPR/Cas9-Based Genome Engineering in Human Pluripotent Stem Cells.
    Kime C; Mandegar MA; Srivastava D; Yamanaka S; Conklin BR; Rand TA
    Curr Protoc Hum Genet; 2016 Jan; 88():21.4.1-21.4.23. PubMed ID: 26724721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances and potential applications of human pluripotent stem cell-derived pancreatic β cells.
    Zhou Z; Ma X; Zhu S
    Acta Biochim Biophys Sin (Shanghai); 2020 Jul; 52(7):708-715. PubMed ID: 32445468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating human disease using stem cell models.
    Sterneckert JL; Reinhardt P; Schöler HR
    Nat Rev Genet; 2014 Sep; 15(9):625-39. PubMed ID: 25069490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling human disease with pluripotent stem cells: from genome association to function.
    Merkle FT; Eggan K
    Cell Stem Cell; 2013 Jun; 12(6):656-68. PubMed ID: 23746975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.