These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
400 related articles for article (PubMed ID: 23751359)
1. Synthesis of bacteria promoted reduced graphene oxide-nickel sulfide networks for advanced supercapacitors. Zhang H; Yu X; Guo D; Qu B; Zhang M; Li Q; Wang T ACS Appl Mater Interfaces; 2013 Aug; 5(15):7335-40. PubMed ID: 23751359 [TBL] [Abstract][Full Text] [Related]
2. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Luan F; Wang G; Ling Y; Lu X; Wang H; Tong Y; Liu XX; Li Y Nanoscale; 2013 Sep; 5(17):7984-90. PubMed ID: 23864110 [TBL] [Abstract][Full Text] [Related]
3. Large-scale synthesis of reduced graphene oxides with uniformly coated polyaniline for supercapacitor applications. Salunkhe RR; Hsu SH; Wu KC; Yamauchi Y ChemSusChem; 2014 Jun; 7(6):1551-6. PubMed ID: 24850493 [TBL] [Abstract][Full Text] [Related]
4. Facile synthesis of nickel network supported three-dimensional graphene gel as a lightweight and binder-free electrode for high rate performance supercapacitor application. Huang H; Xu L; Tang Y; Tang S; Du Y Nanoscale; 2014 Feb; 6(4):2426-33. PubMed ID: 24441914 [TBL] [Abstract][Full Text] [Related]
5. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors. Zhang H; Bhat VV; Gallego NC; Contescu CI ACS Appl Mater Interfaces; 2012 Jun; 4(6):3239-46. PubMed ID: 22680779 [TBL] [Abstract][Full Text] [Related]
6. One-step synthesis of free-standing α-Ni(OH)₂ nanosheets on reduced graphene oxide for high-performance supercapacitors. Dong B; Zhou H; Liang J; Zhang L; Gao G; Ding S Nanotechnology; 2014 Oct; 25(43):435403. PubMed ID: 25299341 [TBL] [Abstract][Full Text] [Related]
8. Interconnected 3 D Network of Graphene-Oxide Nanosheets Decorated with Carbon Dots for High-Performance Supercapacitors. Zhao X; Li M; Dong H; Liu Y; Hu H; Cai Y; Liang Y; Xiao Y; Zheng M ChemSusChem; 2017 Jun; 10(12):2626-2634. PubMed ID: 28440020 [TBL] [Abstract][Full Text] [Related]
9. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. Dong XC; Xu H; Wang XW; Huang YX; Chan-Park MB; Zhang H; Wang LH; Huang W; Chen P ACS Nano; 2012 Apr; 6(4):3206-13. PubMed ID: 22435881 [TBL] [Abstract][Full Text] [Related]
10. An overview of the applications of graphene-based materials in supercapacitors. Huang Y; Liang J; Chen Y Small; 2012 Jun; 8(12):1805-34. PubMed ID: 22514114 [TBL] [Abstract][Full Text] [Related]
11. A green approach to the synthesis of graphene nanosheets. Guo HL; Wang XF; Qian QY; Wang FB; Xia XH ACS Nano; 2009 Sep; 3(9):2653-9. PubMed ID: 19691285 [TBL] [Abstract][Full Text] [Related]
12. Graphene oxide-based benzimidazole-crosslinked networks for high-performance supercapacitors. Cui Y; Cheng QY; Wu H; Wei Z; Han BH Nanoscale; 2013 Sep; 5(18):8367-74. PubMed ID: 23793833 [TBL] [Abstract][Full Text] [Related]
13. β-Cobalt sulfide nanoparticles decorated graphene composite electrodes for high capacity and power supercapacitors. Qu B; Chen Y; Zhang M; Hu L; Lei D; Lu B; Li Q; Wang Y; Chen L; Wang T Nanoscale; 2012 Dec; 4(24):7810-6. PubMed ID: 23147355 [TBL] [Abstract][Full Text] [Related]
14. Supercapacitor electrodes with especially high rate capability and cyclability based on a novel Pt nanosphere and cysteine-generated graphene. Zhang D; Zhang X; Chen Y; Wang C; Ma Y; Dong H; Jiang L; Meng Q; Hu W Phys Chem Chem Phys; 2012 Aug; 14(31):10899-903. PubMed ID: 22772748 [TBL] [Abstract][Full Text] [Related]
15. Graphene-based 3D composite hydrogel by anchoring Co3O4 nanoparticles with enhanced electrochemical properties. Yuan J; Zhu J; Bi H; Meng X; Liang S; Zhang L; Wang X Phys Chem Chem Phys; 2013 Aug; 15(31):12940-5. PubMed ID: 23812434 [TBL] [Abstract][Full Text] [Related]