These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 23751457)

  • 21. Liquid compressibility effects during the collapse of a single cavitating bubble.
    Fuster D; Dopazo C; Hauke G
    J Acoust Soc Am; 2011 Jan; 129(1):122-31. PubMed ID: 21302994
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combined experimental and theoretical investigation of the gas bubble motion in an acoustic field.
    Ma X; Xing T; Huang B; Li Q; Yang Y
    Ultrason Sonochem; 2018 Jan; 40(Pt A):480-487. PubMed ID: 28946449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A single oscillating bubble in liquids with high Mach number.
    Zheng X; Wang X; Zhang Y; Zhang Y
    Ultrason Sonochem; 2022 Apr; 85():105985. PubMed ID: 35344862
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamics of two-dimensional bubbles.
    Piedra S; Ramos E; Herrera JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):063013. PubMed ID: 26172798
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regimes of bubble volume oscillations in a pipe.
    Jeurissen R; Wijshoff H; van den Berg M; Reinten H; Lohse D
    J Acoust Soc Am; 2011 Nov; 130(5):3220-32. PubMed ID: 22087994
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical simulations of stable cavitation bubble generation and primary Bjerknes forces in a three-dimensional nonlinear phased array focused ultrasound field.
    Vanhille C
    Ultrason Sonochem; 2020 May; 63():104972. PubMed ID: 31978709
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrodynamic approach to multibubble sonoluminescence.
    Mahmood S; Yoo Y; Oh J; Kwak HY
    Ultrason Sonochem; 2014 Jul; 21(4):1512-8. PubMed ID: 24529615
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbubble behavior in an ultrasound field for high intensity focused ultrasound therapy enhancement.
    Okita K; Sugiyama K; Takagi S; Matsumto Y
    J Acoust Soc Am; 2013 Aug; 134(2):1576-85. PubMed ID: 23927198
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influences of non-uniform pressure field outside bubbles on the propagation of acoustic waves in dilute bubbly liquids.
    Zhang Y; Du X
    Ultrason Sonochem; 2015 Sep; 26():119-127. PubMed ID: 25771332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An alternative technique for determining the number density of acoustic cavitation bubbles in sonochemical reactors.
    Dehane A; Merouani S; Hamdaoui O; Ashokkumar M
    Ultrason Sonochem; 2022 Jan; 82():105872. PubMed ID: 34920350
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A simple model of ultrasound propagation in a cavitating liquid. Part I: Theory, nonlinear attenuation and traveling wave generation.
    Louisnard O
    Ultrason Sonochem; 2012 Jan; 19(1):56-65. PubMed ID: 21764348
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical simulation of single bubble dynamics under acoustic travelling waves.
    Ma X; Huang B; Li Y; Chang Q; Qiu S; Su Z; Fu X; Wang G
    Ultrason Sonochem; 2018 Apr; 42():619-630. PubMed ID: 29429710
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Source Term Approach for Generation of One-way Acoustic Waves in the Euler and Navier-Stokes equations.
    Maeda K; Colonius T
    Wave Motion; 2017 Dec; 75():36-49. PubMed ID: 30270952
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling of three-dimensional pressure fields in sonochemical reactors with an inhomogeneous density distribution of cavitation bubbles. Comparison of theoretical and experimental results.
    Dähnke S; Swamy KM; Keil FJ
    Ultrason Sonochem; 1999 Mar; 6(1-2):31-41. PubMed ID: 11233936
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bubble population phenomena in sonochemical reactor: II. Estimation of bubble size distribution and its number density by simple coalescence model calculation.
    Iida Y; Ashokkumar M; Tuziuti T; Kozuka T; Yasui K; Towata A; Lee J
    Ultrason Sonochem; 2010 Feb; 17(2):480-6. PubMed ID: 19819749
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Effect of Surfactant on the Motion of a Buoyancy-Driven Drop at Intermediate Reynolds Numbers: A Numerical Approach.
    Li Xj XJ; Mao ZS
    J Colloid Interface Sci; 2001 Aug; 240(1):307-322. PubMed ID: 11446814
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancement of sonochemical reaction rate by addition of micrometer-sized air bubbles.
    Tuziuti T; Yasui K; Kozuka T; Towata A; Iida Y
    J Phys Chem A; 2006 Sep; 110(37):10720-4. PubMed ID: 16970362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical simulation of bubble dynamics in a micro-channel under a nonuniform electric field.
    Jing L; Dan G; Jianbin L; Guoxin X
    Electrophoresis; 2011 Feb; 32(3-4):414-22. PubMed ID: 21259283
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical simulation of single bubble dynamics under acoustic standing waves.
    Qiu S; Ma X; Huang B; Li D; Wang G; Zhang M
    Ultrason Sonochem; 2018 Dec; 49():196-205. PubMed ID: 30174251
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Large Eddy Simulation and Reynolds-Averaged Navier-Stokes modeling of flow in a realistic pharyngeal airway model: an investigation of obstructive sleep apnea.
    Mihaescu M; Murugappan S; Kalra M; Khosla S; Gutmark E
    J Biomech; 2008 Jul; 41(10):2279-88. PubMed ID: 18514205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.