These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23751864)

  • 1. Neural correlates of adaptation in freely-moving normal hearing subjects under cochlear implant acoustic simulations.
    Smalt CJ; Gonzalez-Castillo J; Talavage TM; Pisoni DB; Svirsky MA
    Neuroimage; 2013 Nov; 82():500-9. PubMed ID: 23751864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural adaptation and perceptual learning using a portable real-time cochlear implant simulator in natural environments.
    Smalt CJ; Talavage TM; Pisoni DB; Svirsky MA
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1145-8. PubMed ID: 22254517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between unsupervised learning and the degree of spectral mismatch on short-term perceptual adaptation to spectrally shifted speech.
    Li T; Galvin JJ; Fu QJ
    Ear Hear; 2009 Apr; 30(2):238-49. PubMed ID: 19194293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferior frontal gyrus activation predicts individual differences in perceptual learning of cochlear-implant simulations.
    Eisner F; McGettigan C; Faulkner A; Rosen S; Scott SK
    J Neurosci; 2010 May; 30(21):7179-86. PubMed ID: 20505085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perceptual adaptation to spectrally shifted vowels: training with nonlexical labels.
    Li T; Fu QJ
    J Assoc Res Otolaryngol; 2007 Mar; 8(1):32-41. PubMed ID: 17131213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of training rate on recognition of spectrally shifted speech.
    Nogaki G; Fu QJ; Galvin JJ
    Ear Hear; 2007 Apr; 28(2):132-40. PubMed ID: 17496666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of non-speech sound memory in postlingual deafness: implications for cochlear implant rehabilitation.
    Lazard DS; Giraud AL; Truy E; Lee HJ
    Neuropsychologia; 2011 Jul; 49(9):2475-82. PubMed ID: 21557954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural correlates of individual differences in predicting ambiguous sounds comprehension level.
    Lin Y; Tsao Y; Hsieh PJ
    Neuroimage; 2022 May; 251():119012. PubMed ID: 35183745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of environmental sound training on the perception of spectrally degraded speech and environmental sounds.
    Shafiro V; Sheft S; Gygi B; Ho KT
    Trends Amplif; 2012 Jun; 16(2):83-101. PubMed ID: 22891070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer of auditory perceptual learning with spectrally reduced speech to speech and nonspeech tasks: implications for cochlear implants.
    Loebach JL; Pisoni DB; Svirsky MA
    Ear Hear; 2009 Dec; 30(6):662-74. PubMed ID: 19773659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing.
    Zamaninezhad L; Hohmann V; Büchner A; Schädler MR; Jürgens T
    Hear Res; 2017 Feb; 344():50-61. PubMed ID: 27838372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing speech envelope by integrating hair-cell adaptation into cochlear implant processing.
    Azadpour M; Smith RL
    Hear Res; 2016 Dec; 342():48-57. PubMed ID: 27697486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory training with spectrally shifted speech: implications for cochlear implant patient auditory rehabilitation.
    Fu QJ; Nogaki G; Galvin JJ
    J Assoc Res Otolaryngol; 2005 Jun; 6(2):180-9. PubMed ID: 15952053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in Hearing Acuity among "Normal-Hearing" Young Adults Modulate the Neural Basis for Speech Comprehension.
    Lee YS; Wingfield A; Min NE; Kotloff E; Grossman M; Peelle JE
    eNeuro; 2018; 5(3):. PubMed ID: 29911176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gradual adaptation to auditory frequency mismatch.
    Svirsky MA; Talavage TM; Sinha S; Neuburger H; Azadpour M
    Hear Res; 2015 Apr; 322():163-70. PubMed ID: 25445816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term changes in cortical representation through perceptual learning of spectrally degraded speech.
    Murai SA; Riquimaroux H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 Jan; 209(1):163-172. PubMed ID: 36464716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speech Perception With Combined Electric-Acoustic Stimulation: A Simulation and Model Comparison.
    Rader T; Adel Y; Fastl H; Baumann U
    Ear Hear; 2015; 36(6):e314-25. PubMed ID: 25989069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants.
    Friesen LM; Shannon RV; Baskent D; Wang X
    J Acoust Soc Am; 2001 Aug; 110(2):1150-63. PubMed ID: 11519582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for Cerebellar Contributions to Adaptive Plasticity in Speech Perception.
    Guediche S; Holt LL; Laurent P; Lim SJ; Fiez JA
    Cereb Cortex; 2015 Jul; 25(7):1867-77. PubMed ID: 24451660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Improving speech comprehension using a new cochlear implant speech processor].
    Müller-Deile J; Kortmann T; Hoppe U; Hessel H; Morsnowski A
    HNO; 2009 Jun; 57(6):567-74. PubMed ID: 18685820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.