These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23751864)

  • 21. The contribution of visual areas to speech comprehension: a PET study in cochlear implants patients and normal-hearing subjects.
    Giraud AL; Truy E
    Neuropsychologia; 2002; 40(9):1562-9. PubMed ID: 11985837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Perceptual learning of spectrally degraded speech and environmental sounds.
    Loebach JL; Pisoni DB
    J Acoust Soc Am; 2008 Feb; 123(2):1126-39. PubMed ID: 18247913
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of speaking rate on recognition of synthetic and natural speech by normal-hearing and cochlear implant listeners.
    Ji C; Galvin JJ; Xu A; Fu QJ
    Ear Hear; 2013; 34(3):313-23. PubMed ID: 23238527
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatial Release From Masking in Simulated Cochlear Implant Users With and Without Access to Low-Frequency Acoustic Hearing.
    Williges B; Dietz M; Hohmann V; Jürgens T
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26721918
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pupillometry Reveals That Context Benefit in Speech Perception Can Be Disrupted by Later-Occurring Sounds, Especially in Listeners With Cochlear Implants.
    Winn MB; Moore AN
    Trends Hear; 2018; 22():2331216518808962. PubMed ID: 30375282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.
    Auinger AB; Riss D; Liepins R; Rader T; Keck T; Keintzel T; Kaider A; Baumgartner WD; Gstoettner W; Arnoldner C
    Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Benefit of a commercially available cochlear implant processor with dual-microphone beamforming: a multi-center study.
    Wolfe J; Parkinson A; Schafer EC; Gilden J; Rehwinkel K; Mansanares J; Coughlan E; Wright J; Torres J; Gannaway S
    Otol Neurotol; 2012 Jun; 33(4):553-60. PubMed ID: 22588233
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An fMRI study investigating effects of conceptually related sentences on the perception of degraded speech.
    Guediche S; Reilly M; Santiago C; Laurent P; Blumstein SE
    Cortex; 2016 Jun; 79():57-74. PubMed ID: 27100909
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Perceptual adaptation and intelligibility of multiple talkers for two types of degraded speech.
    Bent T; Buchwald A; Pisoni DB
    J Acoust Soc Am; 2009 Nov; 126(5):2660-9. PubMed ID: 19894843
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving word recognition in noise among hearing-impaired subjects with a single-channel cochlear noise-reduction algorithm.
    Fink N; Furst M; Muchnik C
    J Acoust Soc Am; 2012 Sep; 132(3):1718-31. PubMed ID: 22978899
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a large-item environmental sound test and the effects of short-term training with spectrally-degraded stimuli.
    Shafiro V
    Ear Hear; 2008 Oct; 29(5):775-90. PubMed ID: 18596641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acoustic simulation of cochlear implant hearing: Effect of manipulating various acoustic parameters on intelligibility of speech.
    Jain S; Vipin Ghosh PG
    Cochlear Implants Int; 2018 Jan; 19(1):46-53. PubMed ID: 29032744
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of congruent and incongruent visual cues on speech perception and brain activity in cochlear implant users.
    Song JJ; Lee HJ; Kang H; Lee DS; Chang SO; Oh SH
    Brain Struct Funct; 2015 Mar; 220(2):1109-25. PubMed ID: 24402676
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Event-related potentials for better speech perception in noise by cochlear implant users.
    Soshi T; Hisanaga S; Kodama N; Kanekama Y; Samejima Y; Yumoto E; Sekiyama K
    Hear Res; 2014 Oct; 316():110-21. PubMed ID: 25158303
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development and validation of the Mandarin speech perception test.
    Fu QJ; Zhu M; Wang X
    J Acoust Soc Am; 2011 Jun; 129(6):EL267-73. PubMed ID: 21682363
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Speech perception with combined electric-acoustic stimulation and bilateral cochlear implants in a multisource noise field.
    Rader T; Fastl H; Baumann U
    Ear Hear; 2013; 34(3):324-32. PubMed ID: 23263408
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectro-temporal cues enhance modulation sensitivity in cochlear implant users.
    Zheng Y; Escabí M; Litovsky RY
    Hear Res; 2017 Aug; 351():45-54. PubMed ID: 28601530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of visual speech information in supporting perceptual learning of degraded speech.
    Wayne RV; Johnsrude IS
    J Exp Psychol Appl; 2012 Dec; 18(4):419-35. PubMed ID: 23294284
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The benefits of remote microphone technology for adults with cochlear implants.
    Fitzpatrick EM; Séguin C; Schramm DR; Armstrong S; Chénier J
    Ear Hear; 2009 Oct; 30(5):590-9. PubMed ID: 19561509
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Waiting for lexical access: Cochlear implants or severely degraded input lead listeners to process speech less incrementally.
    McMurray B; Farris-Trimble A; Rigler H
    Cognition; 2017 Dec; 169():147-164. PubMed ID: 28917133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.