These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 23752392)

  • 1. Environmental implications and applications of carbon nanomaterials in water treatment.
    Chae SR; Hotze EM; Badireddy AR; Lin S; Kim JO; Wiesner MR
    Water Sci Technol; 2013; 67(11):2582-6. PubMed ID: 23752392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative photochemical reactivity of spherical and tubular fullerene nanoparticles in water under ultraviolet (UV) irradiation.
    Chae SR; Watanabe Y; Wiesner MR
    Water Res; 2011 Jan; 45(1):308-14. PubMed ID: 20708771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneities in fullerene nanoparticle aggregates affecting reactivity, bioactivity, and transport.
    Chae SR; Badireddy AR; Farner Budarz J; Lin S; Xiao Y; Therezien M; Wiesner MR
    ACS Nano; 2010 Sep; 4(9):5011-8. PubMed ID: 20707347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photochemical and antimicrobial properties of novel C60 derivatives in aqueous systems.
    Lee I; Mackeyev Y; Cho M; Li D; Kim JH; Wilson LJ; Alvarez PJ
    Environ Sci Technol; 2009 Sep; 43(17):6604-10. PubMed ID: 19764224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications.
    Li Q; Mahendra S; Lyon DY; Brunet L; Liga MV; Li D; Alvarez PJ
    Water Res; 2008 Nov; 42(18):4591-602. PubMed ID: 18804836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of humic acid and electrolytes on photocatalytic reactivity and transport of carbon nanoparticle aggregates in water.
    Chae SR; Xiao Y; Lin S; Noeiaghaei T; Kim JO; Wiesner MR
    Water Res; 2012 Sep; 46(13):4053-62. PubMed ID: 22673338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the oxidation of organic compounds by aqueous suspensions of photosensitized hydroxylated-C60 fullerene aggregates.
    Chae SR; Hotze EM; Wiesner MR
    Environ Sci Technol; 2009 Aug; 43(16):6208-13. PubMed ID: 19746715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanotechnologies: tools for sustainability in a new wave of water treatment processes.
    Bottero JY; Rose J; Wiesner MR
    Integr Environ Assess Manag; 2006 Oct; 2(4):391-5. PubMed ID: 17069181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aging of fullerene C₆₀ nanoparticle suspensions in the presence of microbes.
    Chae SR; Hunt DE; Ikuma K; Yang S; Cho J; Gunsch CK; Liu J; Wiesner MR
    Water Res; 2014 Nov; 65():282-9. PubMed ID: 25150515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of 4-chlorophenol by microwave irradiation enhanced advanced oxidation processes.
    Zhihui A; Peng Y; Xiaohua L
    Chemosphere; 2005 Aug; 60(6):824-7. PubMed ID: 15951003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation of bacteriophages via photosensitization of fullerol nanoparticles.
    Badireddy AR; Hotze EM; Chellam S; Alvarez P; Wiesner MR
    Environ Sci Technol; 2007 Sep; 41(18):6627-32. PubMed ID: 17948818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visible-light-driven photocatalytic inactivation of E. coli K-12 by bismuth vanadate nanotubes: bactericidal performance and mechanism.
    Wang W; Yu Y; An T; Li G; Yip HY; Yu JC; Wong PK
    Environ Sci Technol; 2012 Apr; 46(8):4599-606. PubMed ID: 22428729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Singlet molecular oxygen application for 2-chlorophenol removal.
    Gryglik D; Miller JS; Ledakowicz S
    J Hazard Mater; 2007 Jul; 146(3):502-7. PubMed ID: 17513046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Escherichia coli Inactivation by UVC-Irradiated C60: kinetics and mechanisms.
    Cho M; Snow SD; Hughes JB; Kim JH
    Environ Sci Technol; 2011 Nov; 45(22):9627-33. PubMed ID: 21999435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photochemical treatment of 2-chlorophenol aqueous solutions using ultraviolet radiation, hydrogen peroxide and photo-Fenton reaction.
    Poulopoulos SG; Nikolaki M; Karampetsos D; Philippopoulos CJ
    J Hazard Mater; 2008 May; 153(1-2):582-7. PubMed ID: 17931771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of antibacterial effects of carbon nanomaterials against copper-resistant Ralstonia solanacearum.
    Wang X; Liu X; Han H
    Colloids Surf B Biointerfaces; 2013 Mar; 103():136-42. PubMed ID: 23201730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial groundwater treatment: biofilm activity and organic carbon removal performance.
    Långmark J; Storey MV; Ashbolt NJ; Stenström TA
    Water Res; 2004 Feb; 38(3):740-8. PubMed ID: 14723944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of photochemistry and reactive oxygen production by fullerene suspensions in water.
    Hotze EM; Labille J; Alvarez P; Wiesner MR
    Environ Sci Technol; 2008 Jun; 42(11):4175-80. PubMed ID: 18589984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocatalytic treatment of 4-chlorophenol in aqueous ZnO suspensions: intermediates, influence of dosage and inorganic anions.
    Gaya UI; Abdullah AH; Zainal Z; Hussein MZ
    J Hazard Mater; 2009 Aug; 168(1):57-63. PubMed ID: 19268454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translocation of C(60) from aqueous stable colloidal aggregates into surfactant micelles.
    Zhang B; Cho M; Hughes JB; Kim JH
    Environ Sci Technol; 2009 Dec; 43(24):9124-9. PubMed ID: 19928758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.