These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23752465)

  • 1. Water complexes of cytochrome P450: insights from energy decomposition analysis.
    Thellamurege N; Hirao H
    Molecules; 2013 Jun; 18(6):6782-91. PubMed ID: 23752465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy Decomposition Analysis of the Nature of Coordination Bonding at the Heme Iron Center in Cytochrome P450 Inhibition.
    Liu S; Hirao H
    Chem Asian J; 2022 Jul; 17(13):e202200360. PubMed ID: 35514038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How is a metabolic intermediate formed in the mechanism-based inactivation of cytochrome P450 by using 1,1-dimethylhydrazine: hydrogen abstraction or nitrogen oxidation?
    Hirao H; Chuanprasit P; Cheong YY; Wang X
    Chemistry; 2013 Jun; 19(23):7361-9. PubMed ID: 23592585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density functional theory applied to a difference in pathways taken by the enzymes cytochrome P450 and superoxide reductase: spin States of ferric hydroperoxo intermediates and hydrogen bonds from water.
    Surawatanawong P; Tye JW; Hall MB
    Inorg Chem; 2010 Jan; 49(1):188-98. PubMed ID: 19968237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen-bonding interactions trigger a spin-flip in iron(III) porphyrin complexes.
    Sahoo D; Quesne MG; de Visser SP; Rath SP
    Angew Chem Int Ed Engl; 2015 Apr; 54(16):4796-800. PubMed ID: 25645603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New features in the catalytic cycle of cytochrome P450 during the formation of compound I from compound 0.
    Kumar D; Hirao H; de Visser SP; Zheng J; Wang D; Thiel W; Shaik S
    J Phys Chem B; 2005 Oct; 109(42):19946-51. PubMed ID: 16853579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compound I in heme thiolate enzymes: a comparative QM/MM study.
    Cho KB; Hirao H; Chen H; Carvajal MA; Cohen S; Derat E; Thiel W; Shaik S
    J Phys Chem A; 2008 Dec; 112(50):13128-38. PubMed ID: 18850694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide binding to ferric cytochrome P450: a computational study.
    Scherlis DA; Cymeryng CB; Estrin DA
    Inorg Chem; 2000 May; 39(11):2352-9. PubMed ID: 12526496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water as biocatalyst in cytochrome P450.
    Kumar D; Altun A; Shaikh S; Thiel W
    Faraday Discuss; 2011; 148():373-83; discussion 421-41. PubMed ID: 21322494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How do azoles inhibit cytochrome P450 enzymes? A density functional study.
    Balding PR; Porro CS; McLean KJ; Sutcliffe MJ; Maréchal JD; Munro AW; de Visser SP
    J Phys Chem A; 2008 Dec; 112(50):12911-8. PubMed ID: 18563875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examination of the hydrogen-bonding networks in small water clusters (n = 2-5, 13, 17) using absolutely localized molecular orbital energy decomposition analysis.
    Cobar EA; Horn PR; Bergman RG; Head-Gordon M
    Phys Chem Chem Phys; 2012 Nov; 14(44):15328-39. PubMed ID: 23052011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new understanding on how heme metabolism occurs in heme oxygenase: water-assisted oxo mechanism.
    Kamachi T; Nishimi T; Yoshizawa K
    Dalton Trans; 2012 Oct; 41(38):11642-50. PubMed ID: 22825429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbene generation by cytochromes and electronic structure of heme-iron-porphyrin-carbene complex: a quantum chemical study.
    Taxak N; Patel B; Bharatam PV
    Inorg Chem; 2013 May; 52(9):5097-109. PubMed ID: 23560646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1,2,3-Triazole-heme interactions in cytochrome P450: functionally competent triazole-water-heme complexes.
    Conner KP; Vennam P; Woods CM; Krzyaniak MD; Bowman MK; Atkins WM
    Biochemistry; 2012 Aug; 51(32):6441-57. PubMed ID: 22809252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study of the ligand-CYP2B4 complexes: effect of structure on binding free energies and heme spin state.
    Harris DL; Park JY; Gruenke L; Waskell L
    Proteins; 2004 Jun; 55(4):895-914. PubMed ID: 15146488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring second coordination sphere effects in nitric oxide synthase.
    McQuarters AB; Speelman AL; Chen L; Elmore BO; Fan W; Feng C; Lehnert N
    J Biol Inorg Chem; 2016 Dec; 21(8):997-1008. PubMed ID: 27686338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum Mechanics/Molecular Mechanics Studies on the Relative Reactivities of Compound I and II in Cytochrome P450 Enzymes.
    Postils V; Saint-André M; Timmins A; Li XX; Wang Y; Luis JM; Solà M; de Visser SP
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 29986417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of bacterial CYP116B5 heme domain: New insights on class VII P450s structural flexibility and peroxygenase activity.
    Ciaramella A; Catucci G; Gilardi G; Di Nardo G
    Int J Biol Macromol; 2019 Nov; 140():577-587. PubMed ID: 31430491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics of water mediating protein-ligand interactions in cytochrome P450cam: a molecular dynamics study.
    Helms V; Wade RC
    Biophys J; 1995 Sep; 69(3):810-24. PubMed ID: 8519982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gauging the relative oxidative powers of compound I, ferric-hydroperoxide, and the ferric-hydrogen peroxide species of cytochrome P450 toward C-H hydroxylation of a radical clock substrate.
    Derat E; Kumar D; Hirao H; Shaik S
    J Am Chem Soc; 2006 Jan; 128(2):473-84. PubMed ID: 16402834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.