These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23752465)

  • 41. The valence bond way: reactivity patterns of cytochrome P450 enzymes and synthetic analogs.
    Shaik S; Lai W; Chen H; Wang Y
    Acc Chem Res; 2010 Aug; 43(8):1154-65. PubMed ID: 20527755
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Crystal structures of cytochrome P450nor and its mutants (Ser286-->Val, Thr) in the ferric resting state at cryogenic temperature: a comparative analysis with monooxygenase cytochrome P450s.
    Shimizu H; Park S; Lee D; Shoun H; Shiro Y
    J Inorg Biochem; 2000 Aug; 81(3):191-205. PubMed ID: 11051564
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Theoretical study of optical activity of 1:1 hydrogen bond complexes of water with S-warfarin.
    Dadsetani M; Abdolmaleki A; Zabardasti A
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Nov; 168():180-189. PubMed ID: 27294546
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular modelling of lanosterol 14 alpha-demethylase (CYP51) from Saccharomyces cerevisiae via homology with CYP102, a unique bacterial cytochrome P450 isoform: quantitative structure-activity relationships (QSARs) within two related series of antifungal azole derivatives.
    Lewis DF; Wiseman A; Tarbit MH
    J Enzyme Inhib; 1999; 14(3):175-92. PubMed ID: 10445042
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of two alternate water networks in Compound I formation in P450eryF.
    Sen K; Thiel W
    J Phys Chem B; 2014 Mar; 118(11):2810-20. PubMed ID: 24564366
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structures of thiolate- and carboxylate-ligated ferric H93G myoglobin: models for cytochrome P450 and for oxyanion-bound heme proteins.
    Qin J; Perera R; Lovelace LL; Dawson JH; Lebioda L
    Biochemistry; 2006 Mar; 45(10):3170-7. PubMed ID: 16519512
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spectroscopically determined force field for water dimer: physically enhanced treatment of hydrogen bonding in molecular mechanics energy functions.
    Mannfors B; Palmo K; Krimm S
    J Phys Chem A; 2008 Dec; 112(49):12667-78. PubMed ID: 19012387
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Alternatives to the oxoferryl porphyrin cation radical as the proposed reactive intermediate of cytochrome P450: two-electron oxidized Fe(III) porphyrin derivatives.
    Watanabe Y
    J Biol Inorg Chem; 2001 Oct; 6(8):846-56. PubMed ID: 11713692
    [TBL] [Abstract][Full Text] [Related]  

  • 49. DFT study on X⁻·(H₂O)(n=1-10) (X=OH, NO₂, NO₃, CO₃) anionic water cluster.
    Lalitha M; Senthilkumar L
    J Mol Graph Model; 2014 Nov; 54():148-63. PubMed ID: 25459767
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Valence tautomerism in synthetic models of cytochrome P450.
    Das PK; Samanta S; McQuarters AB; Lehnert N; Dey A
    Proc Natl Acad Sci U S A; 2016 Jun; 113(24):6611-6. PubMed ID: 27302948
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Conservation analysis of class-specific positions in cytochrome P450 monooxygenases: functional and structural relevance.
    Gricman Ł; Vogel C; Pleiss J
    Proteins; 2014 Mar; 82(3):491-504. PubMed ID: 24105833
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Force Decomposition Analysis: A Method to Decompose Intermolecular Forces into Physically Relevant Component Contributions.
    Aldossary A; Gimferrer M; Mao Y; Hao H; Das AK; Salvador P; Head-Gordon T; Head-Gordon M
    J Phys Chem A; 2023 Feb; 127(7):1760-1774. PubMed ID: 36753558
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Intermolecular interaction in nucleobases and dimethyl sulfoxide/water molecules: A DFT, NBO, AIM and NCI analysis.
    Venkataramanan NS; Suvitha A; Kawazoe Y
    J Mol Graph Model; 2017 Nov; 78():48-60. PubMed ID: 29017077
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sulfur K-edge XAS and DFT calculations on P450 model complexes: effects of hydrogen bonding on electronic structure and redox potentials.
    Dey A; Okamura TA; Ueyama N; Hedman B; Hodgson KO; Solomon EI
    J Am Chem Soc; 2005 Aug; 127(34):12046-53. PubMed ID: 16117545
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differential behavior of the sub-sites of cytochrome 450 active site in binding of substrates, and products (implications for coupling/uncoupling).
    Narasimhulu S
    Biochim Biophys Acta; 2007 Mar; 1770(3):360-75. PubMed ID: 17134838
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Three-dimensional modelling of human cytochrome P450 1A2 and its interaction with caffeine and MeIQ.
    Lozano JJ; López-de-Briñas E; Centeno NB; Guigó R; Sanz F
    J Comput Aided Mol Des; 1997 Jul; 11(4):395-408. PubMed ID: 9334905
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CW EPR parameters reveal cytochrome P450 ligand binding modes.
    Lockart MM; Rodriguez CA; Atkins WM; Bowman MK
    J Inorg Biochem; 2018 Jun; 183():157-164. PubMed ID: 29530595
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ferrocene Orientation Determined Intramolecular Interactions Using Energy Decomposition Analysis.
    Wang F; Islam S; Vasilyev V
    Materials (Basel); 2015 Nov; 8(11):7723-7737. PubMed ID: 28793673
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Binding free energies of inhibitors to iron porphyrin complex as a model for Cytochrome P450.
    Lee JY; Kang NS; Kang YK
    Biopolymers; 2012 Apr; 97(4):219-28. PubMed ID: 22113809
    [TBL] [Abstract][Full Text] [Related]  

  • 60. NR transfer reactivity of azo-compound I of P450. How does the nitrogen substituent tune the reactivity of the species toward C-H and C=C activation?
    Moreau Y; Chen H; Derat E; Hirao H; Bolm C; Shaik S
    J Phys Chem B; 2007 Aug; 111(34):10288-99. PubMed ID: 17676893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.