BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 23754175)

  • 1. Effect of atmospheric gas plasmas on cancer cell signaling.
    Ishaq M; Evans MM; Ostrikov KK
    Int J Cancer; 2014 Apr; 134(7):1517-28. PubMed ID: 23754175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atmospheric gas plasma-induced ROS production activates TNF-ASK1 pathway for the induction of melanoma cancer cell apoptosis.
    Ishaq M; Kumar S; Varinli H; Han ZJ; Rider AE; Evans MD; Murphy AB; Ostrikov K
    Mol Biol Cell; 2014 May; 25(9):1523-31. PubMed ID: 24574456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor-selective mitochondrial network collapse induced by atmospheric gas plasma-activated medium.
    Saito K; Asai T; Fujiwara K; Sahara J; Koguchi H; Fukuda N; Suzuki-Karasaki M; Soma M; Suzuki-Karasaki Y
    Oncotarget; 2016 Apr; 7(15):19910-27. PubMed ID: 26942565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atmospheric pressure gas plasma-induced colorectal cancer cell death is mediated by Nox2-ASK1 apoptosis pathways and oxidative stress is mitigated by Srx-Nrf2 anti-oxidant system.
    Ishaq M; Evans MD; Ostrikov KK
    Biochim Biophys Acta; 2014 Dec; 1843(12):2827-37. PubMed ID: 25173814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low temperature plasmas as emerging cancer therapeutics: the state of play and thoughts for the future.
    Hirst AM; Frame FM; Arya M; Maitland NJ; O'Connell D
    Tumour Biol; 2016 Jun; 37(6):7021-31. PubMed ID: 26888782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of cold atmospheric plasma in the treatment of cancer.
    Babington P; Rajjoub K; Canady J; Siu A; Keidar M; Sherman JH
    Biointerphases; 2015 Jun; 10(2):029403. PubMed ID: 25791295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ROS implication in a new antitumor strategy based on non-thermal plasma.
    Vandamme M; Robert E; Lerondel S; Sarron V; Ries D; Dozias S; Sobilo J; Gosset D; Kieda C; Legrain B; Pouvesle JM; Pape AL
    Int J Cancer; 2012 May; 130(9):2185-94. PubMed ID: 21702038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting antioxidants for cancer therapy.
    Glasauer A; Chandel NS
    Biochem Pharmacol; 2014 Nov; 92(1):90-101. PubMed ID: 25078786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive oxygen species in redox cancer therapy.
    Tong L; Chuang CC; Wu S; Zuo L
    Cancer Lett; 2015 Oct; 367(1):18-25. PubMed ID: 26187782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor suppressor genes and ROS: complex networks of interactions.
    Vurusaner B; Poli G; Basaga H
    Free Radic Biol Med; 2012 Jan; 52(1):7-18. PubMed ID: 22019631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective cancer-killing ability of metal-based nanoparticles: implications for cancer therapy.
    Akhtar MJ; Alhadlaq HA; Kumar S; Alrokayan SA; Ahamed M
    Arch Toxicol; 2015 Nov; 89(11):1895-907. PubMed ID: 26223318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative stress in apoptosis and cancer: an update.
    Matés JM; Segura JA; Alonso FJ; Márquez J
    Arch Toxicol; 2012 Nov; 86(11):1649-65. PubMed ID: 22811024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anthraquinones sensitize tumor cells to arsenic cytotoxicity in vitro and in vivo via reactive oxygen species-mediated dual regulation of apoptosis.
    Yang J; Li H; Chen YY; Wang XJ; Shi GY; Hu QS; Kang XL; Lu Y; Tang XM; Guo QS; Yi J
    Free Radic Biol Med; 2004 Dec; 37(12):2027-41. PubMed ID: 15544921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-temperature plasmas at atmospheric pressure: toward new pharmaceutical treatments in medicine.
    Yousfi M; Merbahi N; Pathak A; Eichwald O
    Fundam Clin Pharmacol; 2014 Apr; 28(2):123-35. PubMed ID: 23432667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells.
    Kim CH; Bahn JH; Lee SH; Kim GY; Jun SI; Lee K; Baek SJ
    J Biotechnol; 2010 Dec; 150(4):530-8. PubMed ID: 20959125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detailed analysis of pro-apoptotic signaling and metabolic adaptation triggered by a N-heterocyclic carbene-gold(I) complex.
    Holenya P; Can S; Rubbiani R; Alborzinia H; Jünger A; Cheng X; Ott I; Wölfl S
    Metallomics; 2014 Sep; 6(9):1591-601. PubMed ID: 24777153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of p53 with tumor suppressive and oncogenic signaling pathways to control cellular reactive oxygen species production.
    Ladelfa MF; Toledo MF; Laiseca JE; Monte M
    Antioxid Redox Signal; 2011 Sep; 15(6):1749-61. PubMed ID: 20919943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of reactive oxygen species renders mutant and wild-type K-ras pancreatic carcinoma cells susceptible to Ad.mda-7-induced apoptosis.
    Lebedeva IV; Su ZZ; Sarkar D; Gopalkrishnan RV; Waxman S; Yacoub A; Dent P; Fisher PB
    Oncogene; 2005 Jan; 24(4):585-96. PubMed ID: 15580305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment.
    Azad MB; Chen Y; Gibson SB
    Antioxid Redox Signal; 2009 Apr; 11(4):777-90. PubMed ID: 18828708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.