BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 23754380)

  • 1. Strain history dependence of the nonlinear stress response of fibrin and collagen networks.
    Münster S; Jawerth LM; Leslie BA; Weitz JI; Fabry B; Weitz DA
    Proc Natl Acad Sci U S A; 2013 Jul; 110(30):12197-202. PubMed ID: 23754380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for the nonlinear mechanics of fibrin networks under compression.
    Kim OV; Litvinov RI; Weisel JW; Alber MS
    Biomaterials; 2014 Aug; 35(25):6739-49. PubMed ID: 24840618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear strain stiffening is not sufficient to explain how far cells can feel on fibrous protein gels.
    Rudnicki MS; Cirka HA; Aghvami M; Sander EA; Wen Q; Billiar KL
    Biophys J; 2013 Jul; 105(1):11-20. PubMed ID: 23823219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-tensile rheology of fibrous gels quantifies strain-dependent anisotropy.
    Goren S; Ergaz B; Barak D; Sorkin R; Lesman A
    Acta Biomater; 2024 Jun; 181():272-281. PubMed ID: 38685460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of nascent cohesive fiber-fiber interactions to the non-linear elasticity of fibrin networks under tensile load.
    Britton S; Kim O; Pancaldi F; Xu Z; Litvinov RI; Weisel JW; Alber M
    Acta Biomater; 2019 Aug; 94():514-523. PubMed ID: 31152942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-scale strain-stiffening of semiflexible bundle networks.
    Piechocka IK; Jansen KA; Broedersz CP; Kurniawan NA; MacKintosh FC; Koenderink GH
    Soft Matter; 2016 Feb; 12(7):2145-56. PubMed ID: 26761718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibrin fibers have extraordinary extensibility and elasticity.
    Liu W; Jawerth LM; Sparks EA; Falvo MR; Hantgan RR; Superfine R; Lord ST; Guthold M
    Science; 2006 Aug; 313(5787):634. PubMed ID: 16888133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear elasticity of stiff filament networks: strain stiffening, negative normal stress, and filament alignment in fibrin gels.
    Kang H; Wen Q; Janmey PA; Tang JX; Conti E; MacKintosh FC
    J Phys Chem B; 2009 Mar; 113(12):3799-805. PubMed ID: 19243107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocolloidal hydrogel mimics the structure and nonlinear mechanical properties of biological fibrous networks.
    Prince E; Morozova S; Chen Z; Adibnia V; Yakavets I; Panyukov S; Rubinstein M; Kumacheva E
    Proc Natl Acad Sci U S A; 2023 Dec; 120(51):e2220755120. PubMed ID: 38091296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructural and mechanical differences between digested collagen-fibrin co-gels and pure collagen and fibrin gels.
    Lai VK; Frey CR; Kerandi AM; Lake SP; Tranquillo RT; Barocas VH
    Acta Biomater; 2012 Nov; 8(11):4031-42. PubMed ID: 22828381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels.
    Nam S; Hu KH; Butte MJ; Chaudhuri O
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5492-7. PubMed ID: 27140623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that αC region is origin of low modulus, high extensibility, and strain stiffening in fibrin fibers.
    Houser JR; Hudson NE; Ping L; O'Brien ET; Superfine R; Lord ST; Falvo MR
    Biophys J; 2010 Nov; 99(9):3038-47. PubMed ID: 21044602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fibrin Networks Support Recurring Mechanical Loads by Adapting their Structure across Multiple Scales.
    Kurniawan NA; Vos BE; Biebricher A; Wuite GJ; Peterman EJ; Koenderink GH
    Biophys J; 2016 Sep; 111(5):1026-34. PubMed ID: 27602730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic remodeling of fiber networks with stiff inclusions under compressive loading.
    Carroll B; Thanh MH; Patteson AE
    Acta Biomater; 2023 Jun; 163():106-116. PubMed ID: 36182057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clots reveal anomalous elastic behavior of fiber networks.
    Zakharov A; Awan M; Cheng T; Gopinath A; Lee SJ; Ramasubramanian AK; Dasbiswas K
    Sci Adv; 2024 Jan; 10(2):eadh1265. PubMed ID: 38198546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concentration independent modulation of local micromechanics in a fibrin gel.
    Kotlarchyk MA; Shreim SG; Alvarez-Elizondo MB; Estrada LC; Singh R; Valdevit L; Kniazeva E; Gratton E; Putnam AJ; Botvinick EL
    PLoS One; 2011; 6(5):e20201. PubMed ID: 21629793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A constitutive model for the time-dependent, nonlinear stress response of fibrin networks.
    van Kempen TH; Peters GW; van de Vosse FN
    Biomech Model Mechanobiol; 2015 Oct; 14(5):995-1006. PubMed ID: 25618024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early stiffening and softening of collagen: interplay of deformation mechanisms in biopolymer networks.
    Kurniawan NA; Wong LH; Rajagopalan R
    Biomacromolecules; 2012 Mar; 13(3):691-8. PubMed ID: 22293015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical response of collagen networks to nonuniform microscale loads.
    Burkel B; Notbohm J
    Soft Matter; 2017 Aug; 13(34):5749-5758. PubMed ID: 28759060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revealing the molecular origins of fibrin's elastomeric properties by in situ X-ray scattering.
    Vos BE; Martinez-Torres C; Burla F; Weisel JW; Koenderink GH
    Acta Biomater; 2020 Mar; 104():39-52. PubMed ID: 31923718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.