BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 23754425)

  • 21. Protein import into cyanelles and complex chloroplasts.
    Schwartzbach SD; Osafune T; Löffelhardt W
    Plant Mol Biol; 1998 Sep; 38(1-2):247-63. PubMed ID: 9738970
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation of Plastid Fractions from the Diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum.
    Schober AF; Flori S; Finazzi G; Kroth PG; Bártulos CR
    Methods Mol Biol; 2018; 1829():189-203. PubMed ID: 29987723
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein import into complex plastids: Cellular organization of higher complexity.
    Maier UG; Zauner S; Hempel F
    Eur J Cell Biol; 2015; 94(7-9):340-8. PubMed ID: 26071833
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determining the Subcellular Localization of Proteins in the Different Membranes of Diatom Secondary Plastid.
    Liu X; Gong Y
    Methods Mol Biol; 2024; 2776():185-196. PubMed ID: 38502505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein targeting in "secondary" or "complex" chloroplasts.
    Chaal BK; Green BR
    Methods Mol Biol; 2007; 390():207-17. PubMed ID: 17951690
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The invariant phenylalanine of precursor proteins discloses the importance of Omp85 for protein translocation into cyanelles.
    Wunder T; Martin R; Löffelhardt W; Schleiff E; Steiner JM
    BMC Evol Biol; 2007 Nov; 7():236. PubMed ID: 18045484
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differentiation of chromoplasts and other plastids in plants.
    Sadali NM; Sowden RG; Ling Q; Jarvis RP
    Plant Cell Rep; 2019 Jul; 38(7):803-818. PubMed ID: 31079194
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ERAD components in organisms with complex red plastids suggest recruitment of a preexisting protein transport pathway for the periplastid membrane.
    Felsner G; Sommer MS; Gruenheit N; Hempel F; Moog D; Zauner S; Martin W; Maier UG
    Genome Biol Evol; 2011; 3():140-50. PubMed ID: 21081314
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proteomic amino-termini profiling reveals targeting information for protein import into complex plastids.
    Huesgen PF; Alami M; Lange PF; Foster LJ; Schröder WP; Overall CM; Green BR
    PLoS One; 2013; 8(9):e74483. PubMed ID: 24066144
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein targeting to the chloroplasts of photosynthetic eukaryotes: getting there is half the fun.
    Nassoury N; Morse D
    Biochim Biophys Acta; 2005 Mar; 1743(1-2):5-19. PubMed ID: 15777835
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the origin of chloroplasts, import mechanisms of chloroplast-targeted proteins, and loss of photosynthetic ability - review.
    Vesteg M; Vacula R; Krajcovic J
    Folia Microbiol (Praha); 2009; 54(4):303-21. PubMed ID: 19826918
    [TBL] [Abstract][Full Text] [Related]  

  • 32. N-terminal lysines are essential for protein translocation via a modified ERAD system in complex plastids.
    Lau JB; Stork S; Moog D; Sommer MS; Maier UG
    Mol Microbiol; 2015 May; 96(3):609-20. PubMed ID: 25644868
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteomes reveal the lipid metabolic network in the complex plastid of Phaeodactylum tricornutum.
    Huang T; Pan Y; Maréchal E; Hu H
    Plant J; 2024 Jan; 117(2):385-403. PubMed ID: 37733835
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distribution of the SELMA translocon in secondary plastids of red algal origin and predicted uncoupling of ubiquitin-dependent translocation from degradation.
    Stork S; Moog D; Przyborski JM; Wilhelmi I; Zauner S; Maier UG
    Eukaryot Cell; 2012 Dec; 11(12):1472-81. PubMed ID: 23042132
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three old and one new: protein import into red algal-derived plastids surrounded by four membranes.
    Stork S; Lau J; Moog D; Maier UG
    Protoplasma; 2013 Oct; 250(5):1013-23. PubMed ID: 23612938
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Localization and Evolution of Putative Triose Phosphate Translocators in the Diatom Phaeodactylum tricornutum.
    Moog D; Rensing SA; Archibald JM; Maier UG; Ullrich KK
    Genome Biol Evol; 2015 Oct; 7(11):2955-69. PubMed ID: 26454011
    [TBL] [Abstract][Full Text] [Related]  

  • 37. More membranes, more proteins: complex protein import mechanisms into secondary plastids.
    Agrawal S; Striepen B
    Protist; 2010 Dec; 161(5):672-87. PubMed ID: 21036664
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif.
    Gruber A; Vugrinec S; Hempel F; Gould SB; Maier UG; Kroth PG
    Plant Mol Biol; 2007 Jul; 64(5):519-30. PubMed ID: 17484021
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relationship between acyl-lipid and sterol metabolisms in diatoms.
    Maréchal E; Lupette J
    Biochimie; 2020 Feb; 169():3-11. PubMed ID: 31291593
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein transport into secondary plastids and the evolution of primary and secondary plastids.
    Kroth PG
    Int Rev Cytol; 2002; 221():191-255. PubMed ID: 12455749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.