These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 23754425)

  • 41. Protein targeting into secondary plastids of chlorarachniophytes.
    Hirakawa Y; Nagamune K; Ishida K
    Proc Natl Acad Sci U S A; 2009 Aug; 106(31):12820-5. PubMed ID: 19620731
    [TBL] [Abstract][Full Text] [Related]  

  • 42. N-Glycomic and Microscopic Subcellular Localization Analyses of NPP1, 2 and 6 Strongly Indicate that trans-Golgi Compartments Participate in the Golgi to Plastid Traffic of Nucleotide Pyrophosphatase/Phosphodiesterases in Rice.
    Kaneko K; Takamatsu T; Inomata T; Oikawa K; Itoh K; Hirose K; Amano M; Nishimura S; Toyooka K; Matsuoka K; Pozueta-Romero J; Mitsui T
    Plant Cell Physiol; 2016 Aug; 57(8):1610-28. PubMed ID: 27335351
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure of a TOC-TIC supercomplex spanning two chloroplast envelope membranes.
    Jin Z; Wan L; Zhang Y; Li X; Cao Y; Liu H; Fan S; Cao D; Wang Z; Li X; Pan J; Dong MQ; Wu J; Yan Z
    Cell; 2022 Dec; 185(25):4788-4800.e13. PubMed ID: 36413996
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage.
    Gruber A; Rocap G; Kroth PG; Armbrust EV; Mock T
    Plant J; 2015 Feb; 81(3):519-28. PubMed ID: 25438865
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protein targeting into secondary plastids.
    Bolte K; Bullmann L; Hempel F; Bozarth A; Zauner S; Maier UG
    J Eukaryot Microbiol; 2009; 56(1):9-15. PubMed ID: 19335770
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae).
    Cavalier-Smith T
    Philos Trans R Soc Lond B Biol Sci; 2003 Jan; 358(1429):109-33; discussion 133-4. PubMed ID: 12594921
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High light acclimation in the secondary plastids containing diatom Phaeodactylum tricornutum is triggered by the redox state of the plastoquinone pool.
    Lepetit B; Sturm S; Rogato A; Gruber A; Sachse M; Falciatore A; Kroth PG; Lavaud J
    Plant Physiol; 2013 Feb; 161(2):853-65. PubMed ID: 23209128
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transport of proteins into cryptomonads complex plastids.
    Wastl J; Maier UG
    J Biol Chem; 2000 Jul; 275(30):23194-8. PubMed ID: 10787421
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biochemical Characterization of Human Anti-Hepatitis B Monoclonal Antibody Produced in the Microalgae Phaeodactylum tricornutum.
    Vanier G; Hempel F; Chan P; Rodamer M; Vaudry D; Maier UG; Lerouge P; Bardor M
    PLoS One; 2015; 10(10):e0139282. PubMed ID: 26437211
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mapping of subcellular local pH in the marine diatom Phaeodactylum tricornutum.
    Shimakawa G; Yashiro E; Matsuda Y
    Physiol Plant; 2023; 175(6):e14086. PubMed ID: 38148208
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intracellular distribution of the reductive and oxidative pentose phosphate pathways in two diatoms.
    Gruber A; Weber T; Bártulos CR; Vugrinec S; Kroth PG
    J Basic Microbiol; 2009 Feb; 49(1):58-72. PubMed ID: 19206144
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nucleus-to-nucleus gene transfer and protein retargeting into a remnant cytoplasm of cryptophytes and diatoms.
    Gould SB; Sommer MS; Kroth PG; Gile GH; Keeling PJ; Maier UG
    Mol Biol Evol; 2006 Dec; 23(12):2413-22. PubMed ID: 16971693
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plastid division: its origins and evolution.
    Hashimoto H
    Int Rev Cytol; 2003; 222():63-98. PubMed ID: 12503847
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Localization and targeting mechanisms of two chloroplastic beta-carbonic anhydrases in the marine diatom Phaeodactylum tricornutum.
    Kitao Y; Harada H; Matsuda Y
    Physiol Plant; 2008 May; 133(1):68-77. PubMed ID: 18298418
    [TBL] [Abstract][Full Text] [Related]  

  • 55. How protein targeting to primary plastids via the endomembrane system could have evolved? A new hypothesis based on phylogenetic studies.
    Gagat P; Bodył A; Mackiewicz P
    Biol Direct; 2013 Jul; 8():18. PubMed ID: 23845039
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Non-photosynthetic Diatom Reveals Early Steps of Reductive Evolution in Plastids.
    Kamikawa R; Moog D; Zauner S; Tanifuji G; Ishida KI; Miyashita H; Mayama S; Hashimoto T; Maier UG; Archibald JM; Inagaki Y
    Mol Biol Evol; 2017 Sep; 34(9):2355-2366. PubMed ID: 28549159
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evolutionary origin of a preprotein translocase in the periplastid membrane of complex plastids: a hypothesis.
    Bodył A
    Plant Biol (Stuttg); 2004 Sep; 6(5):513-8. PubMed ID: 15375721
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The ultrastructural features and division of secondary plastids.
    Hashimoto H
    J Plant Res; 2005 Jun; 118(3):163-72. PubMed ID: 15937721
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protein import and the origin of red complex plastids.
    Gould SB; Maier UG; Martin WF
    Curr Biol; 2015 Jun; 25(12):R515-21. PubMed ID: 26079086
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Homologous protein import machineries in chloroplasts and cyanelles.
    Steiner JM; Yusa F; Pompe JA; Löffelhardt W
    Plant J; 2005 Nov; 44(4):646-52. PubMed ID: 16262713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.